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Abstract— Self-organizing systems could serve as a solution
for many technical problems where properties like robust-
ness, scalability, and adaptability are required. However,
despite all these advantages and due to the decentralized
control there is no straight-forward way to design such a
system. In this paper we describe a novel design approach
using genetic algorithms and artificial neural networks to
automatize the part of the design process that requires most
of the time. A simulated robot soccer game was implemented
to test and evaluate the proposed method. A new approach
in evolving competitive behavior is also introduced using
Swiss System instead of the full tournament to cut down the
number of necessary simulations.
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1. Introduction
Following the continuous technical development in almost

any areas, systems are getting more and more complicated
and as a result the need for adaptability, robustness and
scalability is increasing. An alternative solution could be the
usage of self-organizing systems (SOS) where these proper-
ties emerge from simple interactions between the system’s
components. Typically, the emergent service is really hard, or
even impossible to predict. Thus, finding a set of rules that
causes the overall system to exhibit the desired properties
presents a great challenge to the system designers. The main
problem is that a small change of a parameter might even
lead to counter-intuitive results. In [1], M. Resnick presents
an example of a simple simulation of slime mold behavior
and was asking colleagues to predict the effect of a simple
change in the rule set. There were only two possible answers,
so without knowledge, there was a 50% chance to guess
the right answer. However, in the experiment a significant
majority of answers, including those from experts on SOS
behavior, was wrong.

To design a self-organizing system with the desired
emergent behavior, it is crucial to find local rules for the
behavior of the system’s components (agents) that generate
the intended behavior at system scale. In many cases, this
is done by a sumptuous trial and error process which in
case of systems with high complexity is not efficient or even
unfeasible. Parameter intensive systems also suffer from the
problem of the unpredictable result of one small change in
the parameter set. Novel approaches like evolutionary meth-

ods provide means to automatize the testing and optimizing
of parameters in an intelligent way.

The objective of this paper is to propose a new method
for designing self-organizing systems using evolutionary
computing, especially genetic algorithms (GA) as a pa-
rameter search technique. A robot soccer simulation model
has been created, where the local rules -agent behaviors-
are represented in an evolvable fashion by using artifical
neural networks (ANN) that process the sensory inputs and
generates the control outputs of a player. The aim is to use
genetic algorithms on the ANNs to automatize the process
of designing the control system and, thus, decreasing the
necessary human interaction.

The paper is structured as follows: In the next section
an overview about self-organization and systems presenting
the background of this paper will be given. Then the design
steps as a general approach with the genetic algorithms will
be described. Section 4 focuses on the practical evaluation
of the approach, presenting the setup of the robot soccer
simulation while Section 5 shows and explains the acquired
results. Related work is discussed in Section 6. This paper
is concluded in Section 7.

2. Self-organizing Systems
The concept of SOS was first introduced by W. Ross

Ashby in 1947 referring to pattern-formation processes tak-
ing place within the system by the cooperative behavior of
its individuals. These could be best described by the way
they achieve their order and structure without having any
external directing influences. There are several definitions
for SOS[2], the following was formulated on the Lakeside
Research Days’08:
“A self-organizing system (SOS) is a set of entities that
obtains global system behavior via local interactions without
centralized control.”
An example could be a team of workers acting on their
own following a mutual understanding. If there were any
external influence like a common blueprint or a boss giving
orders it would result in no self-organization. Also many
examples of SOS can be observed in nature. A school of
fish where each individual has knowledge only about its
neighbors and so there is no leader amongst them. The key
part is the communication between the individuals; the way
they satisfy their own goal such as getting close, but not too
close to other fish in the school while trying to find food in
the water.
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Furthermore it is important to note that the emergent
property cannot be understood just by simply examining
the system’s components in isolation, but requires the con-
sideration of the interactions among the components. This
interaction is not necessity direct, it can be indirect as well
when one component modifies the environment which then
influences other components. This presents a continuous
mixture of positive and negative feedback in the behavior.
In the mentioned example positive feedback is the attractive
effect of the entities in the school or a visible trace of food;
the negative feedback is the proximity of other fish.

By describing self-organizing systems the following ad-
vantages can be observed: These systems are often very
robust against external disturbances; it is clear that a failure
of one component rarely results in a full collapse. Also
adaptability and scalability can be noticed meaning a dy-
namical behavior and a flexibility in the number of com-
ponents. These properties make SOS an interesting option
for controlling complex systems, however these and the
decentralized control makes an SOS difficult to design and
control. Although some ideas for design exist, there is no
general methodology yet explaining how these should be
done.

3. General Methodology
This section describes the proposed method trying to give

a tool for SOS design engineers. The process starts by
defining the main goals: what are the expectations from our
system. The next step is to build an evolvable representation
of local behavior. Our approach uses a genetic algorithm
to explore the solution space, therefore the evolvability
of the representation is of outmost importance so GA
operators like mutation and/or crossover must be defined
on it. Usually, control software is written in programming
languages (JAVA, C, etc.) which are inappropriate for direct
mutation and crossover operators. One notable exception
could be the LISP programming language which is used for
the representation of an evolvable algorithm in [3]. Unlike
standard programs, artificial neural networks (ANNs) or
representations based on fuzzy rules are qualified for this
task. Structure and setup of this representation is also a
question; it can be also trained by the genetic algorithm or
defined in advance (see Figure 1).

In case of ANNs reinforced learning is needed, since we
have to deal with belated rewards we get after a simulation
of many steps of the revised ANN. Thus, the standard
backpropagation algorithm cannot be applied to program
the ANN’s weights. At this point we need our goals to be
formulated as rewards for reinforcing the candidates. We
propose a step by step approach decomposing the overall
goal into smaller achievements weighted according to their
significance to make the learning process smoother. A typical
example would be an object manipulation task for a robot
where the three subtasks would be: finding, grabbing and

Fig. 1: Design method

then manipulating the object. In the next chapter an example
of this methodology will be given.

With a simulation environment acting as a playground, the
genetic algorithm can start evolving the possible candidates.
Typically, a fitness value can be deduced from the simulation
results. This fitness value is then used in the GA to decide
on the fittest individuals. An example for such a fitness
value could be the throughput of a given setup of a wireless
network. In many cases an absolute fitness value cannot be
assigned especially when a competitive emergent behavior
is expected. In order to get a ranking on the individuals it
is necessary to play a tournament among the candidates of
a population. In a native approach, the number of pairings
equals n(n − 1)/2; n being the number of individuals in
a population. In case of long simulations the time can
be effectively cut by using the swiss system, a pairing
system used to organize (chess) tournaments which yield
a ranking with a minimum number of pairings[4] instead
of full tournament. Detailed description can be found in the
next chapter.

If the fitness definition was correct the achievements
should emerge one after the other otherwise a reconsider-
ation of the fitness function is necessary.

4. Evolving Simulated Soccer Agents
As a practical example simulated robot soccer has been

chosen because it reflects complex control problems and by
regarding all the players equal (without dedicated roles such
as, for example, a goalkeeper) it gives a very suitable ex-
ample for self-organizing systems. The first idea was to use
the official Robot Soccer Simulator in the training process,
however since it runs in real-time the time needed for a
sufficient evolution was unacceptably high. To overcome this



Fig. 2: Robot soccer simulator

problem an own simulation environment has been created
which generates the same input for the same output of the
teams as played in the offical server but using asynchronic
coupling not to lose time between cycles.

A game is played by two teams of eleven players each for
60 seconds trying to score goals. Players have to respond
to their received visual information every cycle which cor-
responts to 200ms in real-time according to our definition.
We also made the simulation simpler compared to the official
one by removing the rules for kick off, corner kick, side kick
and penalty kick from the game. Thus, the soccer players
have the ability to turn a given relative angle, to dash to
the direction where they are heading and to kick the ball
with a given power and direction. It was also necessary to
program the agents to kick the ball when it is in proximity
meaning they will always kick the ball when they can. In
case the ball gets out of the field it will be immediately
placed back to the center. The described changes do not
affect the validation of the generality of our approach. Also,
our goal was not to generate a competitive robot soccer team,
but to find a suitable and realistic testbed for our proposed
approach. Figure 2 shows the simulator display output.

4.1 Neural Network Controller
The control of the agents was realized by a fully

connected, time-discrete, recurrent artificial neural network.
Each neuron is connected to every other neuron and itself
via several input connectors. Each connection is assigned a
weight that is a floating value and each neuron is assigned
a bias. We used 13 inputs, 4 outputs (see Table 1) and
different sets of hidden neurons (4-6-8). The inputs are
updated every cycle and two steps of the network were
executed. The second step is required for the update of the
hidden neurons. At each step, each neuron i builds the sum
over its bias bi and its incoming weights wji multiplied by
the current outputs of the neurons j = 1, 2, ..., n feeding
the connections. The output of the neuron for step k + 1 is

Fig. 3: A possible layout of a fully connected network with
two hidden neurons

calculated by applying an activation function F :

oi(k + 1) = F (
n∑

j=0

wjioj(k) + bi)

where F is a threshold function.

F (x) =


180 if x ≥ 180
x if −180 < x < 180.
−180 if x ≤ −180

The thresholds of -180 and 180, respectively, have been
chosen in order to make a conversion to a +/- 180 degree
turning angle suitable for kick direction and turning. For
dash and kick power the simulator implements a threshold of
100, thus, values above this value are truncated. The neural
network learns to adjust its outputs accordingly, therefore,
the output of the respective neurons can be fed directly into
the simulator without the need for explicit conversion. It is
important to note that the players have no global positioning
information about themselves, any other players or the ball.
Their inputs are depending on relative information gained
by their simulated visual sensor. Players have a visual range
of 90 degrees split up to three sectors: from -45 to -15
(Sector 1), from -15 to 15 (Sector 2) and from 15 to 45
(Sector 3) degrees. These sectors help the player coordinate
its movement on the field. There are also two inputs (9-10)
responsible for sensing the edge of the field. The first one
indicates the number of borders seen by the player which is
the number of crossections defined by the line of sight and
the border of the field. It can take the following values:

• 0: player is out of the field, looking away
• 1: player is in the field
• 2: player is out of the field, looking to the field

Training has been conducted by using a genetic algorithm on
the weights and biases of the network with the parameters
described by Elmenreich and Klingler[5]. Basically, multiple



solutions are created using stochastic methods and evaluated
while the best ones are selected for the next generation. We
built on the versatile framework developed by Pfandler [6]
that supports mutation, crossover, elite selection, random
selection, and co-evolution of multiple populations. Each
version of an ANN is represented by the weight matrix and
the biases of each neuron, which we also call the genome
of the network.

In our setup, the selection applies elite selection by
keeping the top 15% of networks for the next generation.
Furthermore, a random selection selects another 12%, where
networks with higher scores and greater diversity for the
gene pool have a higher chance of being selected. 20% of the
population are mutated, 48% are filled with offspring from
crossover functions on the already selected networks, and
5% of the population are replaced by randomly created new
entities. We experimented with population sizes between 25
and 100. The multiple population feature was not used.

Neurons Inputs Outputs

1 Distance to the ball Dash
2 Relative direction of the ball Turn
3 Dist. to nearest teammate in sector #1 Kick power
4 Dist. to nearest teammate in sector #2 Kick direction
5 Dist. to nearest teammate in sector #3
6 Dist. to nearest opponent in sector #1
7 Dist. to nearest opponent in sector #2
8 Dist. to nearest opponent in sector #3
9 Number of borders seen
10 Distance to farthest border
11 Distance to own goal
12 Distance to opponent’s goal
13 Relative direction to opponent’s goal

Table 1: Neural network setup

4.2 Step by Step Fitness
Typically when the task is more complex the definition

of the fitness function is not trivial. In the case of robot
soccer the primary aim is to train teams scoring the most
goals during the given time. However the problem is far
too complicated for a team to find the best solution just
by rewarding by the number of scores. The idea is to
decompose the overall goal into smaller achievements (so-
called guidelines) and let the teams fulfill them one after the
other. This method tries to ensure a smooth learning process
assuming some preliminary knowledge or ideas about the
solution. The guidelines are assigned a weight to setup
a hierarchical order among them. It means a task with
smaller weight is less important, but will be most likely be
accomplished before another tasks with higher value. This
is because the second one is too complex to be achieved
without the first one. Figure 4.2 shows the applied tasks in
their respective order in our simulation.

At the beginning of the training we wanted the teams
to learn that a good distribution on the field might lead

Fig. 4: Weighted fitness

to good overall play. This lead to the introduction of the
first guideline. It was implemented by defining 64 evenly
distributed checkpoints on the field and counting the number
of controlled points every 5 seconds for both teams. A point
is controlled by a team if it has the nearest player to this
point. The accumulated points were added to the final fitness
value. The second guideline was an advice for the teams to
move their players closer to the ball. The distance of the
nearest player for both teams to the ball is measured and
compared every 4 seconds. The team having a player closer
to the ball earned one point. At the end of the game this point
was weighted and also added to the final fitness. The number
of kicks was also counted with a weight however kicking
out of field gives only half the points. It must be also noted
that only the first ten kicks were rewarded to avoid a local
minima where one player is constantly kicking the ball out
while the others occupying the checkpoints. Concerning the
kicking direction the ball distance to the opponents goal was
also measured and calculated every 2 seconds in the same
manner as guideline two. The highest weight was assigned
to the number of scores making insignificant all the actions
by the other team without a score.

4.3 Tournament Ranking with Swiss System
Evolving competitive team behavior is a good example

where one cannot assign a simple absolute fitness value. To
get a ranking on the teams a solution is to play a tournament
among the candidates in each generation (assuming one
population). A full tournament would mean n(n − 1)/2
number of pairings when n is the number of entities in the
population. In case a simulation run takes too much time or
a high number of generations is needed this approach can be
very ineffective. For example, a population of 50 individuals
would require 1225 runs each generation. The proposed
solution tries to minimize the number of necessary pairing
using Swiss System style tournament[7]. It reduces the
required number to dlog2 nen

2 which is in the mentioned case
only 150 games (see figure 5). Inspired by the official FIDE1

rules for chess tournaments we established the following
system:

In each game the winner gets two points, loser gets
zero, in case of a draw both get one point. After the first
round players are placed in groups according to their score

1http://www.fide.com



Fig. 5: Total number of games in full tournament and Swiss
System

(winners in the 2 group, those who drew go in the 1 group,
and losers go in the 0 group). The aim is to ensure that
players with the same score should play against each other.
Since the number of perfect scores is cut in half each round,
it doesn’t take long until there is only one player remaining
with a perfect score. The actual number of rounds needed
is n to be able to handle 2n number of players. In chess
tournaments there are usually many draws, so more players
can be handled (a 5 round event can usually determine a
clear winner for a section of at least 40 players, possibly
more), although in our simulation a draw is very unlikely.
To avoid early games between elite selected entities the first
round is not randomized but cut into two halves where the
first half is playing against the second half.

The drawback of the Swiss system is that it is only
designed to determine a clear winner in just a few rounds.
Regarding other players, we have little information about
their correct ranking. For example, there could be many
players with 3-2 scores and it is hard to say which player is
better than the others, or whether a player with 3.5 points
is better than a player with 3 points. To help determine the
order of finish, a tiebreak method has been implemented.
In order to decide on the ranking for players having same
scores, we used a method developed by Bruno Buchholz[8].
There the score of the players’ opponents is summed up
thus favoring those who have confronted better opponents.
In case it is still undecided the sum is extended by the
points of those opponents who have lost against the player.
This uncertainty in the ranking could cause problems in GA
operators when selecting entities for survival to the next
generation. In our case elite selection was 15% while the
Swiss System ensures only the first and last position to be
ranked correctly (compared to a full tournament of the same
population), thus the position of all other players carries also
some obscurity. After observing this effect in our simulation
we came to the conclusion that having a somewhat imprecise
selection among the top players slows down the process just
a little or not at all. To select entities for survival we used a

roulette wheel selection where the probability being selected
is directly proportional to the fitness, in our case the ranking
of the Swiss System. Since this approach already carries
some randomization some more uncertainty did not make a
crucial impact.

5. Experiences
As described in Section 4 a robot soccer simulation

model has been created where the aim was not to evolve
highly competitive robot soccer teams but to provide a
suitable testbed, therefore the evolved behavior will not
be analyzed specifically in this context. Two experimental
setups with different population numbers have been used to
show their evolution progress during approximately the same
time (same number of total games) as seen in Table 2. In our
scenario where there is no absolute fitness value assigned
to the players due to the tournament ranking method it
is hard to track the progress of the evolution. This is
important to recognize when a local or global minima has
been reached making further computations pointless. An
appropriate solution was to save the best entity in every 10th
or 100th generation and simply making them play against
each other in a full tournament manner where they were
ranked according to the number of games won.

We experienced that a continuous evolution was sustain-
able till it reached a local cost minimum. It means to reach
a certain level of advancement especially for more complex
systems having more waypoints in their way of evolution
the number of iterations is a crucial factor. By using Swiss
System instead of full tournaments the number of simulation
runs were greatly reduced. In the first setup the acceleration
was 74% while in the second one with a population of 50
it was 87% saving a considerable amount of time taken just
for simulation runs.

No. Pop. size Generations Total number Acceleration
of games rate

1 20 5000 250 000 74%
2 50 2000 300 000 87%

Table 2: Simulation scenarios

6. Related Work
There have been some proposals for designing

self-organizing systems. First a method proposed by
Gershenson[9] introducing a notion of “friction” between
two components as a utility to design the overall system
using trial and error. Methods building on trials even if
they are improved by certain notions often suffer from
counter-intuitive interrelationships between local rules and
emergent behavior. There is an imitation-based approach
proposed by Auer[10] where the behavior of a hypothetical
omniscient “perfect” agent is analyzed and mimicked in
order to derive the local rules. The problem here and in all



methods based on imitation is the limitation to cases where
an appropriate example model is available.

So far there exist almost no related work aiming specif-
ically on the evolution of cooperative systems or self-
organizing systems based on ANN controllers. A notable
exception is the work of Nelson[11], describing the evolution
of multiple robot controllers, also using full tournament
rankings, towards a team that plays “Capture the flag“
against an opponent team of robots. Baldassarre[12] also
shows interesting results in evolving physically connected
robots using ANN controllers but no tournament rankings.

7. Conclusion and Future Work
In this paper a new method for designing self-organizing

systems was described and tested which is based on genetic
algorithms and a special ranking system. As a testbed a
simulated robot soccer game was implemented where the
players were controlled by artificial neural networks bred by
a genetic algorithm. For the learning procedure reinforced
learning was used where the main goal was divided into
several sub-achievements acting as waypoints or guidelines
for the entities to find a suitable solution for the given
problem. Fitness was not directly measured but a tournament
was created in each population to rank all the entities. As
seen in [11], full tournament is applicable when no direct
fitness can be calculated however for more complex systems
the number of iterations could be really high resulting
to a long simulation time especially with high population
sizes. The main contribution of this paper is the usage
of a Swiss System in the tournament phase which greatly
shortens the simulation time by reducing the number of
pairings but not hindering the overall process. This work
will be continued by a more detailed analysis on the Swiss
System and its application in genetic algorithms, especially
in evolving competitive behavior. It is also an interesting
research question how to find the best and minimal number
of guidelines making the design process more generic. Novel
methods on finding better GA settings in this topic will be

also investigated.
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