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Abstract—Emergent synchronization in populations of fireflies
is commonly described by the mathematical model of pulse-
coupled oscillators (PCOs). This paper studies the achieved
synchronization accuracy in the presence of coupling delays
between PCOs. For a three node network, accuracy bounds in
the stable state are derived. This case study proves useful when
looking at meshed networks, where nodes may not be directly
connected with all others. While the network topology impacts
the achieved accuracy of PCO synchronization, simulations reveal
that even for non-neighboring nodes the timing misalignment
rarely exceeds twice the direct coupling delay.

I. INTRODUCTION

Phenomena of emergent synchronization are ubiquitous in

nature and are an inherent property common to many sys-

tems, which have intringued scientists since centuries. In the

17 th century, the Dutch scientist Huygens observed that two

pendulum hanging from a common wooden bead naturally

synchronize [1]. Other examples of emergent synchronization

include heart cells [2], routing packets in telecommunication

networks [3], and chaotic systems [4]. References [1, 5] pro-

vide comprehensive overviews of emergent synchronization

phenomena.

Synchronization of connected entities are mathematically

described as coupled oscillators: each entity naturally os-

cillates and influences others. In particular, entities inter-

acting through discrete pulses are described by the theory

of pulse-coupled oscillators (PCOs). This model describes

systems such as the flashing of fireflies [6], the formation

of earthquakes [7], and interacting neurons [8]. Mirollo and

Strogatz [9] derived a mathematical model for synchronization

in populations of PCOs. Under certain coupling conditions,

it was proven that, for an arbitrary number of entities and

independent of the initial conditions, the network always

synchronizes [9].

The mathematical model of PCOs provides simple rules

leading to synchronization, and has been applied to different

fields, integrating different constraints. Applied to wireless

networks, the emergent property of PCO synchronization

enables nodes to align their internal timing reference in a

distributed manner, starting from any initial misalignment.

Various implementations and adaptations to wireless networks

have been considered, and some include:

• utilizing the characteristic pulse of Ultra Wide Band

(UWB) radio to imitate PCO synchronization [10];

• considering long synchronization sequences instead of

pulses [11];

• placing the synchronization unit on the MAC layer, and

performing synchronization through the exchange of low-

level timestamps [12];

Delays are often neglected when studying the emergence of

synchronization among PCOs [8, 9]. In [13] it was shown that

delays limit the attainable accuracy in the stable synchronized

state. For a network of two nodes an accuracy bound was

derived. Furthermore, computer simulations suggested that

these bounds are also valid for fully-meshed networks, i.e.

networks where all nodes are directly connected [13].

In the present paper the work of [13] is extended to

meshed networks, where nodes are not necessarily able to

communicate directly with all others. In meshed networks

PCO interactions over multiple hops influence the attainable

accuracy. We elaborate the influence of the network topology

on the accuracy bounds. For network topologies of three nodes,

we derive conditions where the system remains in a stable

state and establish the corresponding accuracy bounds. We

demonstrate through simulations that the findings for the three

node topologies are generally valid in meshed networks of

arbitrary size.

The remainder of this article is structured as follows. Sec-

tion II reviews the synchronization model for populations of

PCOs. The impact of coupling delays on PCO synchronization

is studied in Section III. Networks with two and three nodes

are analyzed and serve as a basis to understand the achieved

accuracy in meshed topologies with multiple nodes.

II. SYNCHRONIZATION OF PULSE-COUPLED OSCILLATORS

Many natural system entities, such as a firefly emitting light

pulses, a beating human heart, or a pendulum clock, display

a common feature: they naturally oscillate. Their rhythm is

determined by the properties of the system, and an internal

source of energy compensates the dissipation. Such oscillators

are thus autonomous, and classified as self-sustained oscilla-

tors within the class of nonlinear models.

In the following, each oscillator i is described by a phase

function φi(t), i∈{1, . . . , N} where N is the number of
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Fig. 1. (a) Uncoupled PCO phase function and (b) Phase increment upon
reception of a pulse.

oscillators. This function evolves linearly over time from 0
and 1 with natural period T :

dφi(t)
dt

=
1
T

. (1)

Whenever φi(t)=1 at reference instant t=τi, the PCO is said

to fire: it transmits a pulse and resets its phase to 0. Then φi(t)
increases again linearly, and so on. We consider that all

nodes have the same dynamics, i.e. clock jitter is considered

negligible. The phase φi(t) can be seen as an internal counter

that dictates the emission of pulses at instants t=τi. Fig. 1(a)

plots the evolution of the phase function during one period

when the oscillator is isolated.

Received pulses implicitly provide information on the tim-

ing of surrounding oscillators, and are used to update internal

phase functions. When node j fires at instant τj , receiving

node i instantly increases its phase by a value Δ that depends

on its current value φi(τj):

φi(τj) → φi(τj) + Δ (φi (τj)) . (2)

Fig. 1(b) plots the time evolution of the phase when receiving

a pulse at t=τj .

The phase increment Δ(φi) is determined by the phase

response curve (PRC), which was chosen to be linear in [9]:

φi(τj) + Δ(φi(τj)) = min (α · φi(τj) + β, 1) (3)

where α and β determine the coupling between oscillators.

Provided that α>1 and 0<β<1, a network of N identical

oscillators coupled all-to-all are always able to synchronize, so

that all PCOs agree on a common reference instant, indepen-

dent of the initial timing misalignments [9]. By appropriate

choice of the coupling parameters α and β, in-phase syn-

chronization, i.e. all nodes firing at the same instant, emerges

within a few periods. In [14] the proof was extended to meshed

networks.

Absorption: A key to understanding PCO synchroniza-

tion is the absorption process. According to (3) all nodes

whose phase is in the interval [φ�, 1] increment their phase

to 1 upon reception of a pulse and coalesce with the firing

node, i.e. the received pulse forces them to fire instantly. The

phase φ� is defined as the absorption limit and is equal to:

φ� =
1 − β

α
. (4)

The absorption process repeats itself each time a node fires

and if the phase value of some nodes is in the interval [φ�, 1].
The first firing node thus absorbs nodes in the absorption

interval, and they resultantly form a cluster of nodes firing

simultaneously.

For a population of oscillators, Mirollo and Strogatz show

that over time fewer and fewer groups form through absorp-

tions [9]. The dimension of the system is reduced each time

an absorption occurs, and after a transient period where nodes

cluster through absorptions, the system eventually attains a

synchronized state of one cluster firing simultaneously.

III. IMPACT OF DELAYS ON THE SYNCHRONIZATION OF

PULSE-COUPLED OSCILLATORS

A critical assumption in the PCO model presented in the

previous section is that transmitted pulses instantly influence

the phase of receiving nodes. In many systems delays are

unavoidable. For example, when applying the PCO model to

wireless networks, propagation delays between nodes need to

be taken into account. Delays impact the stability as well as

the attainable accuracy of PCO synchronization. This section

elaborates on the stable states achieved by systems of two and

three nodes in the presence of delays. These simple cases are

then used to understand the behavior in larger networks, which

are evaluated through simulations.

Refractory period: When delays are introduced, such as

propagation delays, the coupling between two nodes i and j is

delayed by νij . In the presence of coupling delays a network

of PCOs may become unstable, and the network is unable to

synchronize [15].

To regain stability, a refractory period of duration Trefr

after transmitting is introduced [13]. In refractory, i.e.

when φi(t)<φrefr with φrefr=Trefr/T , no phase increment is

possible, so that received pulses are not acknowledged.

The duration of the refractory period needs to be at least

twice the maximum propagation delay between two nodes, so

that echos are not acknowledged: if node i fires at τi and

forces node j to fire at τj=τi+νij , then the echo transmitted

by node j is not acknowledged if node i is in refractory

at t=τi+2νij . This translates to the following stability con-

dition [13]:

Trefr > max
i,j

2 νij . (5)

Accuracy in the stable state: In the synchronized stable
state, the difference between the reference instants of two

nodes i and j is invariant over time and is defined as the

achieved accuracy:

εij = |τi − τj | . (6)

While the introduction of an appropriate refractory period Trefr

ensures that a network of PCOs converges to a stable state,

the attainable timing accuracy εij is compromised.



A. Two Nodes
The accuracy limits for a network of N=2 nodes were

derived in [13]. The accuracy is bounded by the interval of

firing instants leading to a stable state as described in the

following.
Suppose that the reference instants of two nodes i and j are

aligned such that τj>τi+νij ; then node i is the forcing node
that imposes its delayed reference onto node j. After coupling,

node j is pulled to the delayed timing of node i, τj=τi+νij

(as shown for nodes i=1 and j=2 in Fig. 3), as long as the

pulse of node i falls within the absorption interval of node j,

that is φj(τi+νij) ∈ [φj(τj)−φ�, φj(τj)]. If τi>τj+νij , the

roles are reversed, in the way that node j imposes its delayed

timing onto node i, so that after coupling τi=τj+νij .
On the other hand, if the reference instant of node i is within

the range

τi ∈ [τj−νij , τj+νij ] , (7)

the pulses from node j fall into the refractory period of

node i, and vice versa, and are thus not acknowledged. This

corresponds to the stable state where the phases of both nodes

are not adjusted.
Condition (7) states that the accuracy in a stable state (6)

between directly connected nodes is bound by the coupling

delay [13], that is εij ∈ [0, νij ].

B. Three Nodes
The analysis of [13] is extended to three nodes in the

following. For a network of N=3 nodes, there exist two

connected topologies, as shown in Fig. 2.

(a) (b)

Fig. 2. Networks of three nodes: (a) Triangle topology, (b) Line topology.

a) Triangle Topology: In a triangle network (Fig. 2(a)),

all nodes are directly connected. Suppose that node 1 is

the forcing node that imposes its delayed timing onto the

other nodes. This state is shown in Fig. 3: node 1 fires at

instant t=τ1, which causes nodes 2 and 3 to increment their

phases at instants τ1+ν12 and τ1+ν13 respectively. Assuming

that their phase exceeds the absorption threshold, nodes 2
and 3 fire at instants τ2=τ1+ν12 and τ3=τ1+ν13, and sub-

sequently enter refractory. No further phase increments occur,

because the pulses from nodes 2 and 3 are received when

nodes are in refractory (5). The N=3 triangle network thus

reaches the stable state. In general, starting from a random

initial condition, the system converges to a stable state where

condition (7) is met for all pairs of connected nodes.
In this example, the achieved accuracies of node 1 relative to

node 2 and 3 amounts to ε12=ν12 and ε13=ν13 respectively. In-

terestingly, the accuracy between nodes 2 and 3 is equal to the

Fig. 3. Synchronization interactions for three nodes connected all-to-all.

difference in delays with forcing node 1, i.e. ε23=|ν12−ν13|.
Thus the achieved accuracy does not depend on the direct

delay ν23 but on the delay difference with the forcing node 1,

as nodes 2 and 3 do not influence each other in the stable

state.

b) Line Topology: When nodes form a line network

(Fig. 2(b)), nodes 1 and 3 cannot communicate directly. Two

stable states where one node forces its delayed timing on the

others are distinguished. If node 2 fires first, it imposes its

delayed timing onto the edge nodes 1 and 3. The resulting sta-

ble state corresponds to the triangle topology shown in Fig. 3,

and, although edge nodes cannot communicate directly, the

achieved accuracy between them is equal to ε13 = |ν12 − ν13|.
If either edge node 1 or 3 fires first, it imposes its timing

onto node 2, which in turn imposes its timing onto the

other edge node. Due to the accuracy bound between two

directly connected nodes (7), the resulting accuracy interval

over two hops, between the edge nodes 1 and 3, is bounded

by ε13 ∈ [0, ν12 + ν23].

C. Multiple Nodes

Provided sufficient refractory duration (5), the accuracy in

the stable state between directly connected nodes i and j (7)

is generally valid for a network of N PCOs with delays.

For a system of N nodes, two bounds on the achieved ac-

curacy are easily derived by extending the three node cases in

Section III-B. When all nodes can communicate directly with

each other, the conditions to reach the stable state correspond

to the triangle topology (Fig. 2(a)): the timing misalignment of

node j is upper bounded by the coupling delays to the forcing

node i, so that τj≤τi+νij , ∀ j. The accuracy is therefore

bounded by the largest delay in the network, εij≤maxij νij .

A second bound is obtained by considering a line topology

of N−1 hops. In this case, the worst accuracy is obtained

when one of the edge nodes imposes its timing, and the rest

of the chain follows it. Similar to three nodes forming a line

(Fig. 2(b)), the worst accuracy between the two edge nodes is

equal to the sum of delays along the line, ε1,N≤∑N
i=2 νi−1,i.

Less trivial topologies are treated through simulations in

the remainder of this section. The simple cases presented for

two and three nodes and the accuracy bounds for fully-meshed



and line topologies are instructive to understand the simulation

results.

1) Meshed Network: The network topology is modeled as a

random geometric graph G(N, r): N nodes forming the vertex

set denoted by V are placed on a square area using a uniform

random distribution, and nodes are connected if their distance

is lower or equal than r. The set of links is denoted by E ,

and two connected nodes are called neighbors. The set of

neighbors of node i is defined as Ni= {j : (i, j) ∈ E}. If all

node pairs are connected by a link, the network is said to be

fully-meshed.

A common measure to characterize topological properties

of a network is its algebraic connectivity [16]. It conve-

niently summarizes the topology of a network and its degree

of connectivity. The algebraic connectivity, denoted by κ,

is the smallest non-zero eigenvalue of the Laplacian ma-

trix L (G) [16]. This eigenvalue is strictly greater than 0
if and only if G is a connected graph [16]. Fig. 4 shows

three examples of network topologies of N=25 nodes with

different connectivities. For a fully-meshed network, κ=N .

For a given N , the algebraic connectivity κ is varied by

changing r, the maximum distance connecting two nodes.

(a) κ/N =1 (b) κ/N =10−1 (c) κ/N =10−2

Fig. 4. Examples of network topologies of networks of N=25 nodes for
different normalized algebraic connectivities κ/N .

2) Scatter Plot: To evaluate the stable synchronized state,

the achieved accuracy is measured after nodes have synchro-

nized. Fig. 5 plots the achieved accuracy εij in (6) as a function

of the propagation delay νij . Results in this figure differenciate

between neighboring links, i.e. (i, j) ∈ E , and nodes that are

not able to communicate directly. Both propagation delays and

achieved accuracy are normalized by νr the maximum delay

between two connected nodes, i.e. νr = r/c where c is the

speed of light.

Results in Fig. 5 confirm that (7) is valid for networks

with N nodes: the achieved accuracy between neighboring

nodes is bounded by the propagation delay (7). For non-

neighboring nodes, the accuracy is more scattered, and it

sometimes exceeds the direct propagation delay. On the other

hand, the achieved accuracy may also approach zero, even for

large propagation delays. These large variations in achieved

accuracy are explained by the analysis of the N=3 nodes

network (see Fig. 3).
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Fig. 5. Scatter plot of the achieved accuracy εij as a function of the
propagation delay νij for a network of N=25 with normalized connectivity
κ/N=0.1.

3) Normalized Accuracy: To assess how often the accuracy

is below the propagation delay, we examine the distribution

of the achieved synchronization accuracy. To this end, we

define ρij as the achieved accuracy normalized by the propa-

gation delay:

ρij =
εij

νij
. (8)

a) Local and Global Accuracy: Fig. 6 plots the cumu-

lative distribution function (cdf) of the normalized achieved

accuracy ρij for networks with a normalized algebraic con-

nectivity of κ/N= 10−2 (see Fig. 4(c)). The cdf is computed

from 200 sets of initial conditions performed on 50 randomly

generated networks of N=25 nodes.

Fig. 6 confirms results of the scatter plot. The synchro-

nization accuracy among neighbors is below or equal to the

propagation delay, i.e. ρij≤1 in all cases. The cdf of ρij also

shows that 40% of neighboring links have an accuracy exactly

equal to the propagation delay, observed by a jump in the cdf

at ρij=1. In 70% of cases, non-neighboring nodes achieve

an accuracy below the direct propagation delay. The achieved

accuracy among all non-neighboring nodes is always better

than twice the propagation delay, i.e. ρij<2.
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Fig. 6. Cdf of the achieved accuracy for networks of 25 nodes and an
algebraic connectivity of κ/N=10−2.
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Fig. 7. Cdf of the normalized accuracy for networks of algebraic connec-
tivity κ/N=0.1.

b) Influence of the Number of Nodes: Fig. 7 plots the

achieved normalized accuracy as the number of nodes N
varies. The normalized algebraic connectivity is constant and

equal to κ/N=10−1, and no distinction is made between

neighboring and non-neighboring nodes.

Fig. 7 indicates that the normalized accuracy improves as

the number of nodes in the network increases; for networks

of over N=100 nodes, ρij ≤ 1 in all cases. This indicates

that the probability that corner nodes impose their timing is

diminishing as N increases. Rather middle nodes are likely to

impose their timing, as for the three node case forming a line

topology, as N increases, which results in improved accuracy.

The abrupt jump at εij=1, due to achieved accuracies equal

to the propagation delay, decreases as N increases.

c) Influence of the Connectivity: Fig. 8 plots the nor-

malized accuracy for different algebraic connectivities and for

a constant number of nodes N=50 In Fig. 8, for the fully-

meshed case, i.e. κ/N=1, the normalized accuracy is always

equal or below 1. This confirms the results that the achieved

accuracy in a fully-meshed network is never larger than the

propagation delay. As fewer direct links are present in the

network and the connectivity diminishes, the accuracy also

decreases, and the jump at ρij=1 diminishes as κ decreases,

because the number of neighbors is smaller. For a very low

connectivity κ/N=10−3, poor accuracies above twice the

propagation delay occur, ρij>2, although with low probability.

IV. CONCLUSION

This paper studied the synchronization of pulse-coupled

oscillators (PCOs) in the presence of delays. For a network

of three nodes conditions for convergence to the stable state

were derived, which proved useful when examining larger

networks. Further it was demonstrated that the network topol-

ogy influences the achieved accuracy. Neighboring nodes

are synchronized with an accuracy that is always equal or

below the propagation delay, and in over 90% of cases, non-

neighboring nodes are synchronized within twice the direct

coupling delay.
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Fig. 8. Cdf of the normalized accuracy for networks of 50 nodes with various
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