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Abstract. Event coverage problem in wireless sensor networks haswtanin-
terest of several researchers. While most of the previouk thas been on static
or ground mobile sensor networks, airborne sensor netwwaks also found its
way into several civil and military applications such asiemvmental monitor-
ing or battlefield assistance. In this work, we study the nitgbpattern of an
Unmanned Aerial Vehicle (UAV) network and explore the besedif ordered
and self-organized random mobility in terms of event débecperformance,
when the event is stationary and event duration is finitecifipally, we com-
pare the performance of a UAV network flying in parallel fotioa to a simple,
distributed, locally-interactive coverage-based mopiinodel as well as legacy
mobility models such as random walk and random directionsWidy the event
detection probability of the UAV network with both perfectchimperfect sensing
capabilities. Our results show that when the timing comstisaare highly strin-
gent or when the UAV sensors have a high miss probabilitypdlyh formation
cannot achieve a high detection probability and a selffumgal distributed mo-
bility model is more effective.

1 Introduction

Wireless sensor networks have found various application@gin environmental mon-
itoring, health monitoring, target tracking in hostilasitions, etc. [1]-[2]. Especially, in
the case of monitoring physically inaccessible or dangeeraas for humans to enter,
such as wildfire tracking, glacier or volcano monitoringgliness detection in emer-
gencies or hazardous material tracking, use of wirelessoseretworks is expected to
increase tremendously. Due to the inaccessibility of treggephical areas in these ap-
plications, the sensor nodes either need to be droppedrigraniandom static network
or mobile ground or airborne robots equipped with sens@siaeded to be deployed.
Moreover, if the event (target) to be detected by the senstwark is of time-critical
nature, the coverage of the network should be sufficiengh bd be able to respond to
the detected event in a timely manner; such as wildfire mdngaor liveliness detec-
tion under rubble in case of an earthquake, where the emeyrgensonnel work against
the clock. In such cases, using a mobile sensor network wamikdghly beneficial both
in terms of event detection and utilization of the availagytstem resources [3].

In this paper, we study the event detection performance oihamanned aerial ve-
hicle (UAV) network for different mobility models. Specifity, we aim to determine
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when it would be beneficial for the UAV network to fly in a cetizad, deterministic,
parallel-formation. To this end, first, we derive the prabgbof detection of the UAV
network flying in formation, when a finite-duration statiopavent is assumed to occur
at a random location in the geographical area to be monitdvedcassume that sensing
capabilities of the sensors on-board are imperfect (hergtis a non-zero probability
that a UAV will miss an event in its sensing coverage). We caraghe performance
of parallel-formation with a distributed, coverage-bassabperative mobility model
that operates in a self-organizing manner and uses only topalogy information to
detect events without prior knowledge of the physical togg| by reducing the over-
lapping covered areas. While determining the mobility pathassumption is made on
the application the sensor network is deployed for. Nuna¢studies are conducted to
test the performance of the parallel-formation and covedaased mobility models as
well as legacy mobility models such as random walk and randioection. It is shown
that while a centralized, deterministic, parallel-formatmobility model might be eas-
ier to implement, it does not always provide acceptablequarnce in terms of event
detection probability. More specifically, when the eveneaeto be detected within a
strict time interval or when the sensing capabilities onWiA¥/s are highly imperfect
(unreliable) a more intelligent, adaptive, and preferaglj-organizing mobility model
is required to achieve a high probability of event detectiorsuch cases, our results
show that the simple, distributed, random mobility modelestigated in this paper can
overcome the limitations of the parallel-formation model.

The remainder of the paper is organized as follows. In Se@id®ackground on
mobility models and coverage problem in wireless sensawardss is summarized. A
brief event detection analysis for the parallel-formatsprovided in Section 3. Results
are given in Section 4 and the paper is concluded in Section 5.

2 Background

2.1 Coveragein Wireless Sensor Networks

Coverage problems in wireless sensor networks are of grgairtance and have been
investigated by several researchers. In static wirelassosenetworks, in general, cov-
erage problem is treated as a node-activation and schgduioblem [7]-[9]. More
specifically, algorithms are proposed to determine whiagissenodes should be ac-
tive such that an optimization criterion is satisfied. Thigecion can for instance be
minimizing the coverage time, achieving a certain evengct&in probability, or cov-
ering each point in the area by at ledstensors, etc. In addition, there are also studies
that take into account not only the event (or network) cogeraut the connectivity of
the wireless sensor network as well [7]. While deciding vatéensor nodes should be
active at a given point in time, coverage and connectivitjureements are met.
Recently, mobile sensor networks have been under invéistigand it has been
shown that mobility, while complicating the design of highayer algorithms, also
can improve the network, for instance, in terms of capacibtyerage, etc. [10]-[11].
Optimum mobility patterns for certain applications aregmsed, such as mobile target
tracking, chemical detection, etc. using both ground ami@laeshicles. Mobile robots



with swarming capability operate cooperatively and aimdbieve a global goal have
also been considered [12]-[16].

2.2 Mobility models

There are several mobility models that take into accoundépendence on the mobility
pattern of other nodes in the network [4], social relatiopsiof the mobile nodes [5],
or topographical information [6], etc. In this paper, thédaing mobility models are

considered:

e Random Walk: A mobile node picks a random speed and direction from pre-
defined uniform distributions either at fixed time intervatsafter a certain fixed dis-
tance is traveled. The current speed and direction of thdlenebde do not depend on
the previous speeds and directions.

e Random Direction: A random direction drawn from a uniform distribution is as-
signed to a mobile node and the mobile node travels in thattian till it reaches the
boundary of the simulation area. Once it reaches the boyyitlpauses there for a fixed
amount of time, then moves along the new randomly selectedttn. In this paper,
for fair comparison, we assume that the pause time is zero.

o Parallel-formation: Mobile nodes sweep the geographical area from border to
border following a direction parallel to the boundary line.

2.3 Coverage-based Mobility

In this newly proposed mobility model, the objective is nmabding coverage in a given
time duration. To this end, we aim to minimize the overlapn®sn the coverage ar-
eas of different mobile nodes and as shown in Fig. 1, we madeés between mobile
nodes that cause them tepel each other. The magnitude of the force that each node
applies to others is inversely proportional to the distabe®veen the nodes, i.e., the
closer the nodes get the stronger tipegh each other. We also assume that the mobile
node knows its current direction and a force with a magnitodersely proportional to
the node’s transmission range (i.e),is applied to it in the direction of movement to
avoid retracing the already covered areas by the mobile.n&tdbe time of direction
change, each mobile node computesrésaltant force vector acting on them by them-
selves and their neighbors (i.e., the mobile nodes withair thansmission range) and
move in the direction of the resultant vector. The forces abie node 1 at the time
of decision are illustrated in Fig. 1, where mobile node 1 @&/mg toward right in the
previous step.

Observe from Fig. 1 that the resultant force on nadR; = Zj F;, whereF;; |
V; with |[F;;| = L and|Fj;| = % whenj # i, whereV; is the velocity vector of
mobile node;, = is the transmission range of each mobile node,&nds the distance
between nodesand;. The direction ofF'j; is parallel to the line drawn from node
to nodei. Mobile nodei will move in the direction ofR; with a speed chosen from the
rangel0, V;,,] for a fixed time duration (i.e., a step length). Same algorithrun for all
the mobile nodes and the directions are updated accordifigdy the time of direction
change, a mobile mode does not have any neighbors, theidiréehot changed. Note



Fig. 1. lllustration of forces on mobile node 1, where the dashedeis the transmission range
of the node and mobile node 1 is moving toward right.

that the step length is a design parameter and depends opstieensparameters such
asN,, andr among others.

Since the mobile airborne network is highly dynamic and teiginborhood of the
mobile nodes constantly change, the mobile nodes need idedeased on only local
interaction with other nodes and adapt to the changes imthieommentin a distributed,
self-organizing manner. Note that while the ultimate gdahaximizing coverage is not
incorporated in the mobility model, as our results show sehbebverage (i.e., event de-
tection capability) emerges. Further work is necessargsigh an analytical model that
studies the performance of this mobility model and posdiblgrovide improvements.

3 Event Detection Analysis of Parallel-Formation

The system under investigation is a wireless sensor netthatkconsists of airborne
mobile nodes with the same transmission range. We assurmththbAVs fly at the
same altitude and the directions are considered in a twesional plane. The system
parameters are summarized in Table 1.

Table 1. System Parameters

Parametgbefinition

N, Number of mobile nodes

r Transmission range

a Square simulation area length

P, Total event (target) detection probability

P, Event (target) miss probability for each UAV
ta Event (target) duration




In this section, we provide the event coverage (detectioof)gbility by the mobile
nodes flying in parallel formation (See Fig. 2 for a simplastration) within a given
time durationt,. Since complete coordination between the mobile nodegigined,
the mobile network needs to be connected at all times.

'y - —
time = 0 . time = t,
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Fig. 2. Coverage illustration of mobile sensor nodes during timetion ¢;, when the speed of
the mobile nodes i¥,, for parallel-formation.

Note that the event detection probability can be determifireed the percentage area
thatis covered over timg. Assume that the transmission range of the mobile nodes is
and their coverage area is of disc shape, i.e., area coveestth node at a given time is
7r? and the nodes fly with a constant spéégl To better evaluate the limitations of the
parallel-formation mobility, we assume that the number oabite nodes},,, is such
that one side of the square coverage area is fully-coverexhwie mobile nodes are
aligned. Depending on the application of interest somelapdyetween the coverages
of the UAVs might be assumed. In this work, we assume that tAéslare placed
such that the overlap is minimized given that airborne netvi® connected; i.e., the
displacement between the UAVs is equat-to

First, let's assume that the UAV sensors are accurategrebability of miss £,,,)
=0). The total covered area by the UAVs in timgwheret; < % is the sum of areas
of the overlapping truncated cylinders shown in Fig. 2 arghisn by:

Ac = antd + Aoc (1)

whereA,. is the overlapping coverage between the discs and is given by
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Then, the probability of detectior)) for a single event, wheR,, = 0 is given by:
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The probability of detection for a known numberf,, targeted events,; , can

be calculated by substituting; from Eq. (6) into the following:
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Pdm = (Pd)Nt‘“‘ = {

If on the other hand,,, # 0, i.e., there is a non-zero probability that an event may
not be detected even if the whole area of interest is coveredebUAVS, thenP, at a
given timet,; can be calculated to be:

n—1
Pi= (1= PY) Y pY1
i=1
+ PNe(=D(1 - Ple)A./a® (8)

wheren = [%1 is the total number of passes withipy V. is the number of checks
a UAV does to detect an eve,. is the covered area within timg — (n — 1)a/V,,
(i.e., the covered area during the n-th pass) and can belatdwsing Eq. (1). Note
that V.. is a design parameter and depends on how often sensing isdle&s N, is
increased, the effect of miss probability will be reducederpected.

4 Resultsand Discussion

In this section, performance comparison of several mgtitibdels in terms of event
detection probability is provided via Monte Carlo simuteits, where each data point
is computed over 2000 different runs. It is assumed thatahge of the mobile nodes,
r, is 500m. The simulation area is square-shaped with a lesfgtBO0m. For parallel-
formation, these values correspond to 8 mobile nodes anddbde nodes are initially



aligned along one side of the observation area. For the otiodility models under
study in this paper, initially, mobile nodes are randomilstidbuted in the simulation
area. When a mobile node approaches the boundary of theagiorubrea, a random
direction toward the simulation area is assigned for randatk and coverage-based
mobility models. The speed of the mobile nodes is assumed 5orb/s. The directions
of the mobile nodes are updated every 50 m. Similarly, the sitee for sensing is also
assumed to be 50 m. We assume that a single event occurs atomréocation within
the simulation area and lasts for a duration pfeconds.

4.1 Probability of detection with perfect sensing

In this section, we study the probability of detection perfance of several mobility
models when the sensors on-board the UAVs are accuratdiyith 0. Fig. 3 shows the
probability of detection versus; for random walk, random direction, coverage-based
and parallel-formation models whé¥y,, = 8. Observe that the detection performance
of the mobility models under investigation strictly depsmah the timing constraints of
the application. It; > a/V,,, = 800 sec, parallel-formation outperforms the rest of the
models since the whole geographic area can be swept by tlwsveudr, if the timing
constraints are strict and do not allow a network flying imfation to cover the area,
then a more efficient mobility model is required. The simplearage-based mobility
model that inherently reduces the overlapped coverages éetaeen different mobile
nodes can perform better than the rest, only using locatimétion. More sophisticated
mobility models can be designed that take into account tstetyi of flight of the UAVs;
however, this is beyond the scope of this paper.
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Fig. 3. Probability of detection versus event duration, wién = 8, P,, = 0, and number of
targeted events is 1.

As an illustration, we also studied the case with multipiiehary events. Fig. 4
shows the probability of detection versus event duratioemtne number of targeted



events is 8. Note that while for short time values the prditglof detection perfor-
mance of all models suffer, the trends are still the same esitigle event scenario.
The random mobility models fail to detect all events as fagiarallel-formation. Also,
observe from Figures 3 and 4 that the analytical and sinaratesults for parallel-
formation are in excellent agreement verifying the findingsere the analytical results
are obtained using Eq.'s (6) and (7), respectively.
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Fig. 4. Probability of detection versus event duration, wién = 8, P,, = 0, and number of
targeted events is 8.

4.2 Probability of detection with imperfect sensing

Next, we study the case with imperfect sensing capabilitds investigate the impact
of event duration as well as the probability of miss of thesees on the detection
performance of the chosen deterministic and random myhilddels. Simulation and
analytical results are provided, where the analyticalltesue obtained using Eq. (8).

Fig. 5 shows the probability of detection versus event demathenP,,, = {0.5,0.75}.
In both cases, the probability of detection decreases vétipect to the case with
P,, =0, as expected. Observe that parallel-formation signiflganiffers from the im-
perfections of the sensing capabilities and although thelevbbservation area can be
fully-swept, probability of detection stays at 0.9 and @6#,, = 0.5 andP,,, = 0.75,
respectively. While forP,, = 0.5, parallel-formation can still perform better than the
other models for certain time durations, whey, is increased 0.75, coverage-based
mobility model performs consistently better than paraitemation.

To better illustrate the impact df,, on the performance, we studied the detec-
tion performance whety = 100, 1000 sec for severaP,, values. Results are shown
in Fig. 6. Observe that whety = 100 sec, all random models outperform parallel-
formation, for all P,, values under investigation. On the other hand, when theagmi
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Fig. 5. Probability of detection versus event duration, whén = 8 and (a)P,, = 0.5 and (b)
m = 0.75.

constraints are loosened parallel-formation, coveragethand random direction mod-
els all perform similarly. Random models exceed the peréoree of parallel-formation
when the sensing capabilities are highly imperfect.

Finally, while not analyzed in this paper, a drawback of teatralized scheme is
the requirement to be fully-connected at all times. In thafiguration under study
in this paper if a node in the middle of the formation breakemdhe network itself
becomes disconnected and a percentage of the area canmaebeccanymore, unless
the remaining nodes regroup into a new formation. On therdthed, intuitively, the
distributed mobility models studied in the paper are exgetd be more robust to node
failures, since system-wide connectivity is not required ghe nodes communicate
with each other only when they are within each other’s caye(éor the coverage-based
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Fig. 6. Probability of detection versus probability of miss, wh¥p, = 8 and (a)tq = 100 sec
and (b)tq = 1000 sec.

mobility) or do not communicate at all (random walk, randomection). The impact
of malfunctioned nodes on the detection performance needs to be furthettigate.

5 Conclusions

In this work, event detection performance of an airborne d@visor network that em-
ploys deterministic and random mobility models is investigl. Specifically, the limi-
tations of a UAV network flying in parallel-formation is expked and its performance is
compared with some legacy mobility models as well as a cadper coverage-based
mobility model that uses local topology information. Theuks show that if timing-
constraints are highly-stringent or the sensing capaslidn-board the UAVs are highly
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imperfect, parallel-formation might not be sufficient tdefe the events in the observa-
tion area. While for such cases random mobility models aogvatto improve the de-
tection performance, further study is necessary to desigmpimum mobility pattern
that minimizes the event detection time and/or maximizespttobability of detection.
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