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Abstract—In this work, we study the target detection and
tracking problem in mobile sensor networks, where the per-
formance metrics of interest are probability of detection and
tracking coverage, when the target can be stationary or mobile
and its duration is finite. We propose a physical coverage-based
mobility model, where the mobile sensor nodes move such thatthe
overlap between the covered areas by different mobile nodesis
small. It is shown that for stationary target scenario the proposed
mobility model can achieve a desired detection probabilitywith
a significantly lower number of mobile nodes especially when
the detection requirements are highly stringent. Similarly, when
the target is mobile the coverage-based mobility model produces
a consistently higher detection probability compared to other
models under investigation.

I. I NTRODUCTION

Target or event detection/tracking has been one of the main
applications of wireless sensor networks. While most of the
previous work has been on static sensor networks, recently
it has been shown that the coverage of a sensor network
can be improved via mobility [1]. In case of monitoring
geographically inaccessible or dangerous areas, mobile robots
equipped with sensors can be deployed for effective coverage.
Moreover, if the target (event) to be detected by the sensor
network is of time-critical nature, the coverage of the network
should be sufficiently high to be able to respond to the detected
event in a timely manner; such as wildfire monitoring or
liveliness detection under rubble in case of an earthquake,
where the emergency personnel work against the clock.

To this end, in this paper, we propose a coverage-based
cooperative mobility model for wireless sensor networks to
detect and track (monitor) targets without prior knowledgeof
the physical topology and by using only local topology infor-
mation. While determining the mobility path, no assumption
is made on the application the sensor network is deployed for.
Empirical studies are conducted to test the performance of the
proposed model, where a stationary target (such as a live body
under rubble) or a mobile target (such as animals monitored
in their habitat) is assumed to occur at a random location in
the geographical area to be monitored and target detection
probability and tracking (monitoring) efficiency performance
of the proposed model is compared with legacy mobility
models such as random walk, random direction, etc. It is
shown that the coverage-based mobility model consistently
results in a better performance than the other mobility models.

In addition, we also provide a brief analysis to determine the
minimum number of nodes required to achieve a certain target
coverage, for the stationary target scenario. Results showthat
while for small detection probabilities all mobility models
perform similarly, for higher desired detection probabilities
coverage-based mobility model significantly outperforms the
rest in terms of the number of required mobile nodes.

The remainder of the paper is organized as follows. In
Section II background on mobility models and coverage prob-
lem in wireless sensor networks is summarized. The proposed
coverage-based mobility model is presented in Section III.A
brief detection analysis is provided in Section IV. Resultsare
given in Section V and the paper is concluded in Section VI.

II. BACKGROUND

A. Mobility models

There are several mobility models that consider independent
or dependent movement among mobile nodes [2]. In this paper,
the following well-known mobility models are considered:
• Random Walk: A mobile node picks a random speed and

direction from pre-defined uniform distributions either atfixed
time intervals or after a certain fixed distance is traveled.The
current speed and direction of the mobile node do not depend
on the previous speeds and directions.
• Random Direction: A random direction drawn from a

uniform distribution is assigned to a mobile node and the
mobile node travels in that direction till it reaches the boundary
of the simulation area. Once it reaches the boundary, it pauses
there for a fixed amount of time, then moves along the new
randomly selected direction. In this paper, for fair comparison,
we assume that the pause time is zero.
• Parallel-path: A mobile node picks a random speed and

sweeps the geographical area from border to border following
a direction parallel to the boundary line.

There are several other mobility models that take into
account the dependence on the mobility pattern of other nodes
in the network [2], social relationships of the mobile nodes[3],
or topographical information [4], etc. In this work, initially, the
models explained above are studied in addition to the proposed
mobility model in Section III. Note that while in the above
models (and the proposed model presented in the next section)
the speeds are drawn from a probability distribution, in the



Monte Carlo simulations conducted in this paper we assume
that the mobile nodes have a fixed speed.

B. Coverage in Wireless Sensor Networks and Robotics

Coverage problem in wireless sensor networks is of great
importance and has been investigated by several researchers. In
static wireless sensor networks, in general, coverage problem
is treated as a node-activation and scheduling problem [5]-[6].
More specifically, algorithms are proposed to determine which
sensor nodes should be active such that an optimization crite-
rion is satisfied. The criterion can for instance be achieving a
certain detection probability, or covering each point in the area
by at leastk sensors, etc. In addition, there are also studies
that take into account not only the event (or network) coverage,
but the connectivity of the wireless sensor network as well [5].
While deciding which sensor nodes should be active at a given
point in time, coverage and connectivity requirements are met.

Recently, mobile sensor networks have been under investi-
gation and it has been shown that mobility, while complicates
the design of higher layer algorithms, also can improve the
network, for instance, in terms of capacity, coverage, etc.
[1],[7] Optimum mobility patterns for certain applications are
proposed, such as mobile target tracking, chemical detection,
etc. using both ground and aerial vehicles. Mobile robots with
swarming capability operate cooperatively and aim to achieve
a global goal have also been considered [8]-[11].

In robotics, several mobility models have also been de-
veloped. In many of these models the robots which are too
close repel each other to avoid collisions but to maintain
communication they attract each other when they are separated
more than a certain distance. Gas expansion model [12], for
example, mimics the way gas particles are spread to vacuum
when they are allowed to expand. This model, again, uses the
attraction and repulsion forces between the robots to maximize
the dispersion while maintaining the communication. Similar
models have also been proposed by using an artificial force
or potential fields for the robots to cooperatively move [13],
[14]. However, the focus in these studies is maximizing the
spread not the coverage, and they are based on the assumption
that the robots have high computing capacities.

III. C OVERAGE-BASED MOBILITY MODEL

In this section, we propose a mobility model that makes use
of the local physical topology information. The objective is to
improve coverage of a geographical area for a given mobile
sensor network. While designing the model, the applicationis
not predetermined. The performance of the algorithm will be
tested for a target detection/monitoring application later in the
paper.

We assume that there is no prior knowledge of the location
of the mobile nodes. Since the objective is to improve cover-
age, it is desirable to reduce the overlap between the covered
areas by different mobile nodes and use the limited number
of mobile nodes efficiently (specifically, if the mobile sensor
network will be used for a time-critical application.).

In the model, the speed of the mobile nodes is a uniform
random variable in[0, Vm] and the direction is chosen in fixed
time intervals according to the local topology at the time of
the decision. More specifically, we assume that there is a
force between mobile nodes that causes them torepel each
other. The magnitude of the force that each node applies to
others is inversely proportional to the distance between the
nodes, i.e., the closer the nodes get the stronger theypush each
other. We also assume that the mobile node knows its current
direction and a force with a magnitude inversely proportional
to the node’s transmission range (i.e.,r) is applied to it in the
direction of movement to avoid retracing the already covered
areas by the mobile node. At the time of direction change,
each mobile node computes theresultant force vector acting on
them by themselves and their neighbors (i.e., the mobile nodes
within their transmission range) and move in the direction
of the resultant vector. The forces at the time of decision
are illustrated in Fig. 1, where mobile node 1 is moving
toward right in the previous step. While the distance between
the mobile nodes can easily be determined if the nodes are
equipped with GPS, due to cost limitations it might be more
feasible to use the received signal strength jointly with the
direction of signal arrival to estimate the distance. Further
work is necessary to determine a power and cost efficient
method to estimate the distances between mobile nodes.
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Fig. 1. Illustration of forces on mobile node 1, where the dashed circle is
the transmission range of the node and mobile node 1 is movingtoward right.

Observe from Fig. 1 that the resultant force on nodei, ~Ri =
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j 6= i, where~Vi is the velocity vector of mobile nodei, r is the
transmission range of each mobile node, anddij is the distance
between nodesi andj. The direction of~Fji is parallel to the
line drawn from nodej to nodei. Mobile nodei will move
in the direction of ~Ri with a speed chosen from the range
[0, Vm] for a fixed time duration (i.e., a step length). Same
algorithm is run for all the mobile nodes and the directions
are updated accordingly. If, at the time of direction change, a
mobile node does not have any neighbors, the direction is not
changed. Note that the step length is a design parameter and
depends on the system parameters such as number of mobile
nodes (Nm) and transmission range (r) among others.



IV. D ETECTION ANALYSIS

In this section, we provide an approximation to the target
coverage (detection) probability by the mobile nodes within a
given time durationtd. Note that the detection probability can
be determined from the percentage area that is covered over
time td. Assume that the transmission range of the mobile
nodes isr and their coverage area is of disc shape, i.e., area
covered by each node at a given point in time isπr2.

First, let’s assume that the nodes are static. Given that the
total area to be covered isA, the number of sensor nodes is
N , and the initial locations of the sensor nodes are uniformly
random, the number of sensor nodes that cover a given pointi
in the observed area has a Poisson distribution with parameter
ρπr2, whereρ = N/A [1]:

Prob{i is covered by k nodes} =
e−ρπr2

(ρπr2)k

k!
(1)

Since the probability that a pointi is not covered by any
nodes is given bye−ρπr2

, the percentage covered area (i.e.,
detection probability) by one or more static sensor nodes can
be shown to be:

Pcs
= 1 − e−ρπr2

= 1 − e−Nπr2/A (2)

From Eq. (2), the minimum number of static sensor nodes
necessary to cover a geographical area (i.e., detect a target)
with probabilityPd, where0 < Pd < 1 is given as:

Nmin
s =

⌈

−A ln(1 − Pd)

πr2

⌉

(3)

Next, we will find the percentage covered area by mobile
nodes duringtd. The covered area by a mobile node in[0, td]
can be represented as the union of discs. Assume that the
speed and the direction of the mobile nodes are independent
and identically distributed with probability distribution func-
tions fV (v) and fΘ(θ), respectively, wherev ∈ [0, Vm] and
θ ∈ [0, 2π]. The effective area covered by each sensor node
increases with mobility and the average covered area changes
from πr2 to πr2 + 2rE[V ]td at time td, when the nodes are
mobile, whereE[V ] is the expected value of the sensor speed.
Since the mobile nodes move independently from each other,
the distribution of mobile nodes at any time instant still has a
Poisson distribution [1]. Therefore, similar to the staticcase,
the percentage of covered area by at least one mobile sensor
node in[0, td] can be shown to be:

Pcm
= 1 − e−ρ(πr2+2rE[V ]td) = 1 − e−N(πr2+2rE[V ]td)/A (4)

From Eq. (4), the minimum number of mobile sensor nodes
necessary to cover a geographical area (i.e., to detect a target)
with probabilityPd within a time durationtd, where0 < Pd <
1 is given as:

Nmin
m =

⌈

−A ln(1 − Pd)

πr2 + 2rE[V ]td

⌉

(5)

On the other hand, if a mobility model exists such that the
coverage of mobile nodes do not overlap at any time, detection
can clearly be achieved with a smaller number of nodes. For a

non-overlapping mobility model, the number of required nodes
can be calculated to be:

Nnooverlap =

⌈

A

πr2 + 2rE[V ]td

⌉

(6)

However, since the node distribution of the random mobility
models used in this paper exhibits a uniformly random distri-
bution, we use the equations for random network in the next
section.

V. RESULTS AND DISCUSSION

In this section, performance comparison of several mobility
models in terms of target detection probability and tracking
(monitoring) efficiency is provided via Monte Carlo simula-
tions, where each data point is computed over 2000 different
runs. It is assumed that the range of the mobile nodes,r,
is 500m. The simulation area is square-shaped with a length
of 4000m. Initially, mobile nodes are randomly distributed
in the simulation area. When a mobile node approaches the
boundary of the simulation area, a random direction toward the
simulation area is assigned for random walk and coverage-
based mobility models. The speed of the mobile nodes is
assumed to be 5 m/s. The directions of the mobile nodes are
updated every 50 m. We assume that a single event occurs at
a random location within the simulation area and lasts for a
duration oftd seconds for stationary target case and movestd
seconds for mobile target case.

A. Stationary target

First, we study the impact of target duration and number
of mobile nodes on the probability of detection performance
of several mobility models. Fig. 2 shows the probability of
detection versus target duration, whenNm = {2, 10, 18, 26}.
Analytical results are obtained using Eq.’s (2) and (4). Observe
that in all cases random walk model results in the worst
performance. While forNm = 2 the rest of the mobility
models perform very similarly, as the number of mobile nodes
is increased, coverage-based mobility model outperforms the
rest of the mobility models under investigation. For compari-
son, the target detection probability of a uniformly-randomly
distributed static wireless network is also shown. While the
detection probability of the static network improves with
increasingNm, it is significantly lower than that of mobile
sensor network. The benefit of mobility can be observed even
with short target durations.

Fig. 3 shows the probability of detection versus number
of nodes, when target duration istd = {100, 300, 500, 1000}
sec. Similar to the previous case, coverage-based mobility
model performs better than the other models. Observe that
while the achieved probability of detection values are very
close for coverage-based and random direction models, higher
probability of detection can be achieved for a wider range of
parameter values.

Next, we illustrate the number of required nodes to achieve
a certain detection probability. Fig. 4 shows the analytical and
simulation results for the number of required nodes versus
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Fig. 2. Probability of detection versus stationary target duration,
when (a)Nm = 2, (b) Nm = 10, (c) Nm = 18, and (d)Nm = 26.
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Fig. 3. Probability of detection versus number of nodes, when (a) td =

100sec, (b)td = 300sec, (c)td = 500sec, and (d)td = 1000sec.

target duration, when the desired probability of detection
value is set to{0.9, 0.99}. Observe that coverage-based model
performs the best and random walk model performs the worst
once more. Coverage-based model shows a great match to
the analytical results obtained from Eq. (5), whereas the
other models significantly deviate from the bound as the
detection requirements become more stringent. For example,
approximately 10 less mobile nodes are required to achieve
a detection probability of 0.99 with coverage-based mobility
model than the nearest, i.e., random direction model.
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Fig. 4. Number of required nodes versus target duration, when (a)Pd = 0.9,
(b) Pd = 0.99.

B. Mobile Target: Linear motion

In this section, we investigate the target detection and
tracking performance of static and mobile wireless sensor
networks. In addition to detection probability we also compute
the percentage tracking time for several scenarios, where
percentage tracking time is defined as the ratio of the time
the target is within the coverage of at least one sensor node to
total duration of event. First, we assume that the target starts
its motion from a randomly selected point in one boundary
of the simulation area and moves toward a randomly selected
point in the opposite boundary following a line. This scenario
could be considered an example of border monitoring, where
the target tries to cross the border without being detected.

Fig. 5 (a) and (b) show percentage tracking and detection
probability performance of the mobile and static wireless
sensor networks versus number of nodes. While the detec-
tion probability performance of all models are very close to
each other, percentage tracking performance of coverage-based
mobility model is higher than the others. This is encouraging
since the target can be “tracked” with few number of sensor
nodes even though whole geographical area is not covered
100% of the time. The tracking performance can clearly be
improved if the target location information is incorporated
into the mobility path after it is detected. However, since
the application (i.e., objective) of the sensor network is not
specified in this paper, such mobility path design is beyond
the scope of this work.
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Fig. 5. (a) Percentage tracking and (b) probability of detection versus number
of nodes, for a mobile target moving border-to-border on a linear path.



C. Mobile Target: Random walk

Next, we assume that the target follows a random walk in
the geographical area (such as an animal wandering around in
its habitat). The tracking percentage performance in this case
is very similar to the previous one where the target follows a
linear path and the results are omitted due to space limitations.

Figures 6 and 7 present the detection probability perfor-
mance of the mobile and static networks versus number of
nodes andtd, respectively. The analytical results shown are
obtained using Eq. (4). While this equation is derived for a
stationary target, the simulation results for the coverage-based
mobility model result in an excellent match to the analysis
and provide an approximate estimate for the performance of
the proposed model. Observe from Fig. 6 that static network
performs as good as the mobile network with sensor nodes
following a random walk, diminishing the benefit of mobility.
However, the other mobility models outperform the static
network as expected. As the number of nodes is increased
benefit of coverage-based model becomes more profound as
shown in Fig. 7.
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Fig. 6. Probability of detection versus number of nodes, when (a) td =

100sec, (b)td = 1000sec.
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Fig. 7. Probability of detection versus target duration, when (a)
Nm = 2 and (b)Nm = 18.

VI. CONCLUSIONS

In this work, a local, cooperative, coverage-based mobility
model is proposed to improve stationary or mobile target
coverage in mobile sensor networks. The proposed model
uses local topology information and no application specific
details are considered. The performance of the proposed model
is compared with legacy mobility models in terms of target
detection probabilities and tracking (monitoring) efficiencies.

The results show that if the target detection probability re-
quirements are highly stringent (i.e., the desired detection
probability is close to 1), the benefit of the proposed model in
terms of required mobile nodes become more significant. The
results also illustrate the benefit of a mobile sensor network
over a static network both in case of mobile and stationary
targets.
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