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Abstract—In this paper, we compare deterministic and prob- approach has the benefit of potential online implementation
abilistic path planning strategies for an autonomous unmaned and hence, immediate reaction to changes. For a fair compar-

aerial vehicle (UAV) network, where the objective is to expbre j5on e study the offline implementation of the probaiist
a given area with obstacles and provide an overview image. appr,oach

We present both online and offline implementations of the ) )
algorithms as alternative solutions, where applicable, aianalyze ~ There are several planning strategies proposed for ground
the performance of the offline implementations. Results ilistrate  robots [1], delivery systems [5], autonomous high-speg&ddfi

the benefits and drawbacks of different planning strategiesand  wing UAV networks [6], or mobile sensor networks [7] with
provide insight into which strategy should be taken, given e  ifterent objectives and constraints. Applications rarfigen
constraints of the application of interest. . . >
snow removal, lawn mowing, floor cleaning, to surveillance,
_ Index Terms—UAV networks, wireless sensor networks, mobil- - mopile target tracking, chemical or hazardous materiaéaciet
ity, coverage tion and containment, or to any combination of localization
and navigation problems (see [8], [9], [10]). While some
l. INTRODUCTION algorithms use prior information and have exact or partial
Networked small unmanned aerial vehicles (UAV), somelecomposition of the areas, others use sensor-based mform
times called microdrones, have recently drawn the interggin in unknown environments to make navigation decisions.
of several researchers focusing on topics such as cont#dgorithms exist that try to minimize the path traveled anéi
engineering, communication networking, mission planningr energy required to achieve a goal. These different sckeme
and image processing. In this paper, we consider a networkhaive some common building blocks, such as static or dynamic
UAVs, where each UAV is equipped with an on-board camerarea decomposition, cooperative or non-cooperative ratio
and the objective is to explore an area of interest by takimgdividual or collective decisions, static or adaptive aebr.
several pictures and provide an overview image in an efficiefherefore, in this paper, we study two different approathat
manner. consider some intuitive combination of these building kkc
In this paper, we are interested in path planning methodsThe remainder of the paper is organized as follows. The
for a UAV network. Generally, path planning for robotics hasystem model and metrics of interest are given in Section Il.
two main components [1]: area decomposition (e.g., statithe methodologies are introduced in Section Ill. Resules ar
dynamic) and routing (e.g., deterministic, adaptive, @ep given in Section IV and the paper is concluded in Section V.
ative). Several centralized and distributed planning esh
have been proposed using combinations of these components.
The benefits and drawbacks differ in terms of adaptability,
scalability, robustness, path completion times, and otet- The monitored area consists of a bounded geographical
rics. In this work, we compare and contrast deterministid amegion with no-fly zones. The UAVs take-off from a home-
probabilistic path planning methods in terms of achievablmse, fly at a certain height, and return to home-base.
coverage, number of pictures taken, path planning and execu
tion times, for different area sizes and number of UAVs. Mor
specifically, we study two path planning methods and théi
variants: 1) a method that usesstatic area decomposition Observation areas the region of interest without obstacles.
[2] and a simplifiedCapacitated Vehicle Routing@], where a Forbidden areaconsists of the collection of obstacles and
traveling salesman problem model is utilized, and 2) a ntethao-flight zones in the region of interest, where the safety
with no area decomposition arebaptiverouting [4]. requirements are taken into account. To determine thederbi
Results show that both approaches have their benefits aleh area, first the obstacles are grown according to the UAV
drawbacks. Since the deterministic approach aims to ma@miwingspan. This step is necessary for the area decomposition
the number of pictures taken to cover a given area, givéire., picture point generation) step of tleterministicpath
enough UAVs, full coverage can lygiaranteedHowever, this planning algorithm to prevent the UAVs from crashing into
approach requires prior knowledge of the area and has timitebstacles. For therobabilistic path planning algorithm, on
adaptability to changes. On the other hand, the probabilisthe other hand, the UAVs detect the obstacles in flight.

Il. SYSTEM MODEL AND PERFORMANCEMETRICS

System Model



The additional system parameters are the numbéy, ( Algorithm 1 Deterministic Path Planning: Variants 1-2
velocity (), and maximum flight timeX) of the UAVs, and Input: Area of interest, number of UAVS\)), maximum flight

the ground picture coverage of a photo taken from a givéci)ﬁ‘e’ V?EF“% groﬂnq picture queragedan(;l orientation.
flight height using certain camera specifications. utput: 19 _t paths; picture points and orientations.
1) Partitioning:
a) For Variant 1 this step is skipped.

B. Performance Metrics b) For Variant 2: the observation area is divided into parti-
We study the deterministic and probabilistic path planning tions of size less than a threshold.
methods in terms of the following metrics: 2) Picture point generationPicture point coordinates are gener-

Spatial coveragés the percentage covered area [4]. We are ~ 2t€d Using an Integer Linear Program, given the partitionsf
) step 1, the ground picture coverage and orientation [2].

interested in both the observatio'¢) and forbidden (') 3) Clustering k-meansclustering is used to group picture points,
area coverages. such that each cluster can be visited by a single UAV within
Path completion timés the time required for all the UAVs its maximum flight time.N largest clusters are chosen.

to fly their paths. To compute these times, we use a simple4) Routing For each cluster, shortest route is generated between
UAV model, where each UAV flies on average with 4 m/s the fixed set of picture points using a genetic algorithm thase
. ’ . . TSP solution.
horizontal speed and with 3.75 m/s vertical speed for tdke-o
and landing; it takes 6.25 s to take a picture; and the ratatio

speed is30°/s. These values are taken from the specifications . = . .
of the Microdrone’s md4-200 [11]. flight time. If the number of clusters generated is more tien t

Number of picturesaken is also a parameter of interest tgumbe_r O_f available UAVSX), N Iargest cI_usters are chosen_
illustrate the redundancy of a given plan. to maximize the covered area in a single flight. Then, a geneti
Planning timeis the time required to generate one plan algorithm solution to TSP is run for each cluster to obtam th

" routes for each UAV.

Il1. PATH PLANNING METHODS
A. Deterministic Path Planning B. Probabilistic Path Planning

This method assumes prior knowledge of the observationThis approach assumes no prior knowledge of the area of
and forbidden areas. The approach is summarized in Algoterest. Ideally, there is no prior area decomposition ror a
rithm 1. Given the area of interest, number, velocity, flighend-to-end planTherefore, path planning becomes equivalent
time of UAVS, and ground coverage of the camera at the fligtet routing. In other words, the UAVs are informed of the
height, this method first decomposes the area into equal absaundaries of the area of interest and they start from theshom
cells that correspond to one picture and then generates ll@se and take pictures at intervals determined by the ground
shortest paths for the UAVs to cover the fixed set of pictugicture coverage. They continuously sense for obstacles. T
points. The picture points are generated using an Integerdri path decisions are made during flight based on the available
Program such that the number of picture points are miriRformation at a given point in time. To this end, a belieted
mized given the area, ground coverage, and possible cam@evement approach proposed in [4] that makes use of the
orientations (for details of the algorithm, readers aremeid local physical topology information without global knowlige
to [2]). Two picture orientations are allowed for simpligit of the network is adopted. At fixed time intervals, the UAVs
where UAVs align in north-south or east-west directions mhesense their environment for neighboring UAVs (e.g., wittioa
the pictures are taken. Since the complexity of the algarithcommunications). If neighbors are detected, the nodes ex-
increases with the number of potential picture points, vge alchangdocationanddirectioninformation (provided by GPS).
consider a simplified variant, where the area is partitioneal Then, each node computes thelief (i.e., probability) that
smaller subareas. The picture points are generated for edcghould move toward a new direction, based on tioele’s
partition and the resulting coordinates are merged. own observationand the information from its neighbors. The

The second step is the routing of the UAVs between theeriod for sensing neighbors is chosen based on the wingspan
picture points. The problem can be modeled as a Capacitatédhe UAVs to avoid collisions.

Vehicle Routing Problem (CVRP), in which a given set of Since the UAVs only utilize local information, the algonith
,,customers” are visited by a set of ,,vehicles” with lirditeis robust to environmental and network changes, such as
,,capacity”. In our case, the customers, vehicles, andaiigpa new areas to be covered or UAV failure, and quickly adapts
are the picture points, UAVs, and limited battery, respetyi to these changes in self-organizing mannerHowever, the
Several heuristics exist for the solution of CVRP. We use erformance is affected heavily by the vulnerabilities doie
genetic algorithm developed to solve the well-known Triaagel communication constraints imposed by the radio-on-board a
Salesman Problem (TSP), which is suitable for the pictuveell as wireless channel dynamics. The impact of communi-
point set size and plan time considerations in this paper. Fmtion limitations on the algorithm is part of our future Wor
practical reasons (e.g., envisioning limited time for plizuy a While the method is envisioned for online implementation,
path), we use a simplified multiple-TSP algorithm given tée sfor a fair comparison with the deterministic approach, iis th
of picture points. To this end, first, the set of picture ppiate paper, we analyze the offline implementation, where thespath
clustered into groups using k-means clustering such that eare generated using full knowledge of the area of interest
cluster can be covered by a single UAV within its maximurand loaded on the UAVs prior flight. It should be noted that



AIgorithm 2 Probabilistic Path Planning: Variants 1_2 Small scenario: Deterministic Small scenario: Probabilistic

Input: Area of interest, initial directions, number of UAVS
(&V), maximum flight time, velocity, ground picture coverage, 100
sensing range and period.

Output: Flight paths; picture points and orientations.

1) Path generationThe cooperative flight paths are computed for
each UAV using the belief-based movement algorithm of [4].
2) Picture point generation Picture points are generated by
sampling the flight paths using the ground picture coverage. % 50 100 0 50 100
3) Routlng Xinm Xinm
a) Variant 1: The algorithm returns the computed picture @) (b)
point coordinates from step 2 and the correspondingg. 1. Generated paths for the small scenario, wier: 1
flight path coordinates.
b) Variant 2: In this step, the overlaps between the gener-

ated pictures are determined and redundant pictures are . .
eliminated. since rotations cost time and energy.

yinm
yinm

50
N

V. RESULTS AND DISCUSSION
this is not the ideal way to implement this approach, since it

loses its benefits with respect to its adaptivity to envirenin . . d orobabilisti thods via simulati The ressid
changes. For an analysis of the online implementation of t c and probabilistic methods via simulations. The '

belief-based movement algorithm for coverage as well as-tim© probab|I|st|c; method are generated over 100 runs..Wtystu
critical event detection and tracking applications, thaders several scenarios with different area and network sizes. Th

are referred to [4] and [12]. The offline implementation oeﬁths'mUIatlon pgrameters are summanz_ed in Table 1. We study
variants is shown in Algorithm 2. three area sizes: small (Fig. 1), medium (second quadrant of

Variant 1 of the algorithm is similar to thenlineimplemen- Fig. 2)’|de large (Flg'. 2). duration for ol . h
tation, where each waypoint is a picture point, i.e., wagfmi We allow a certain time duration for plan generations. The

are separated by a distance less than or equal to a pictere gterministic approach \(arlants can return one or no plans a
Once the paths are computed using belief-based movem! end of the allowed time (see Table | for plan times). For

algorithm of [4], they are sampled at every ground pictur‘QStance' for the large scenario, Varlantll of thg deterstimi
size in flight direction and the line segments between tisgheme cannot generate the picture point locations to be tra

consecutive picture points are computed such that the Hnes® ed due to the area size. Hence, for this scenario we present

not cross a forbidden area. Variant 1 is simple and has Qeverﬁfuns _c_ml_y for Variant 2 of the deterministic algorithrher .
benefits, but it also has a major drawback: redundancy. Duenﬁr@bab'l'snc_ z_;\ppro_ach on the other hand can g_eneratep‘rmlh
lack of knowledge from other UAVS' coverages, there might pans. To_ut|I|ze this fact, we use the aIIottgd t|me“to g?ter
duplicate images, which is both time and energy consumirg‘ manyvirtual plans as possible and we pick the “best” plan.

While such redundancy might be useful in case of imperfe e definition of "best plan”is clearly subjective but baset

sensing [13], its analysis is beyond the scope of this papell. e intended goal it is defined as the plan that achieves &iighe

Variant 2 of the algorithm is considered for offline imple—ObserV"’mOn area coverage. If multiple plans are genevaited

mentation. It is proposed to overcome the potential rednoygla the Same coverage, we pick the one with the sh.or.test t|me.
of Variant 1. By a simple post-processing of the picture poin _ Finally, we assume that the UAVs have a limited flight
generated by Variant 1, the overlaps between the pictufdf@® of 17 min, which is a reasonable value for current
are determined and redundant picture points are eliminaf€§hnology. Path plans are generated such that these thees a
from the generated paths. Note that if the UAVs exchan§@! €xceeded and we assume that the UAVs fly only one round,
complete history information and continuously build thein -6+ dépending on the number of UAVSs parts of the area of
map of the environment, an online implementation of thi§t€rest might not be covered within one flight time.

variant is also possible. Variant 2 results in fewer picture

In this section, we evaluate the performance of the determin

TABLE |

taken than Variant 1 and faster plan generation compared to SIMULATION PARAMETERS
the deterministic approach.

An example for the paths generated by the Variant 2 [ Parameter [ Value |
of deterministic and probabilistic path planning stra¢sgis Observation Small. 4831.89, Medium: 28160.7
shown in Fig. 1 for a small area of interest and a single UAV. area [n?] Large: 116474
The ground picture coverages are also shown (light grey) ove | Obstacle Small: 807.114, Mecium: 14277.5

) . area [n?] Large: 54270.4
the observation area (green) with 2 obstacles (red). Thergro ~ 11,3,6,9]
obstacle boundaries are also shown. Observe that the path [Maximum V [m/s] 5
from the probabilistic approach is significantly longer rtha Flight time [min] 17
the deterministic case. But, as will be shown, with a larger Sor\‘/):rr:éé"ﬁg’]re 2432
number of UAVs where cooperation is possible the difference  —Afowed plan tme [s] || 20 (small), 100 (medium, Targe)

significantly reduces. Also, the orientation of the pictufer
the probabilistic scheme is very random, which is a drawback



Large scenario: Deterministic

Large scenario: Probabilistic

300

200

100

yinm

-100

-200

300

200

100

yinm

-100

-200

-200 0 200

Fig. 2. Generated paths for the large scenario, wies 6

First, we investigate the coverage performance of the dif-

small

—e— Probabilistic (Variant 1)
0 Probabilistic (Variant 2)

—+— Deterministic (Variant 1)
|arge -+ Deterministic (Variant 2)

ferent planning strategies. Figures 3-4 show the observati

and forbidden area coverages, respectively, versus théemu
of UAVs. Since the variants for both schemes achieve th
same observation area coverage only hgs for the second

variants are shown in Fig. 3. Observe that the coverage
significantly improves for both schemes with increasiNg

as expected. On average, probabilistic schemes requir
higher number of UAVs than the deterministic scheme
achieve high coverage. While the deterministic scheme aims
for full coverage and can achieve it given sufficié¥it only

probabilistic guarantees can be given for the other sche
Also observe that for the large scenario the two schemes
perform very similar.

small

1.02

%;. 4. Forbidden area coverage versus number of UAVs

Second, we analyze the path completion times for all
schemes in Fig. 5. They are computed as described in Sec-

?&bn Il using the specifications of the md4-200. As mentioned

ove, the UAVs can fly a limited amount of time. Though
none of the algorithms are optimized for path completioretim
|t is still preferable to achieve a given coverage in a short
me (e.g., due to energy saving and also for time-critical
applications). From Fig. 5 we observe that the coverages
presented in Figures 3-4 can be achieved within the flight
time for all scenarios. However, observe that for the smadl a
medium scenarios, especially for small, the deterministic
algorithms can complete the path in a significantly shorter
time than the probabilistic schemes. In other words, while
similar coverage values are achieved for both schemes, the
time required to achieve them can significantly differ based

1 2 5 6
L medium the system parameters. As the area size grows, this differen
reduces. The large scenario under study is constructed aya w
L 0_9/ that the entire allowed flight time needs to be consumed to
achieve the presented coverages and hence, for both schemes
08— S e T s o paths are completed around the same time.

0.51

7 8 9

Fig. 3. Observation area coverage versus number of UAVs

The path completion times consist of not only the me-
chanical components due to acceleration/deceleratikerd,
landing, and rotating of the UAVs, but also time necessary
to take pictures. Fig. 6 shows the number of pictures taken
by each scheme. Clearly, both variants of the deterministic
scheme result in a lower number of pictures, since they are op
timized for it. The difference between the deterministid &éme
probabilistic schemes can be as high as 100 % depending on
the area size and/, which also explains the path completion

Observe from Fig. 4 that the forbidden area coverages diwe and coverage differences of the two approaches. \idtian

also high. Deterministic scheme achieves the Iggst since of the probabilistic scheme significantly reduces the nurobe

it is also one of the optimization criteria of the picture qoi pictures taken (by half in some cases) compared to Variant 1.
generating algorithm. Due to its redundancy, Variant 1 @f tiHowever, this approach either enforces offline impleméorat
probabilistic scheme also achieves a high and approaches due to lack of available communication technology or reggiir
that of the deterministic schemes. For the medium and larfedback from a central station that builds a map of the area
scenarios thex is significantly low, due to both the size offrom all UAVs or individual map/history exchange between
the observation area to be covered (which has higher prjorithe UAVs for an online implementation.

and also the size of forbidden areas in these scenarios. Finally, we study the time required to generate a plan
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Fig. 6. Number of pictures taken versus number of UAVs

if all algorithms were implemented offline. Clearly, offline
implementation might not be possible or realistic if theaare [6]

has a higher priority, then the deterministic scheme is more

acceptable.

[l Deterministic (Variant 2)
[ IDeterministic (Variant 1)
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plan time for one mission in s
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(a) Deterministic path planning

Fig. 7.

(b) Probabilistic path planning

Path planning time versus number of UAVs

V. CONCLUSION

We illustrated the benefits and drawbacks of deterministic
and probabilistic path planning strategies for an autongmno
UAV network, where the objective is to explore a given area
with obstacles and provide an overview image. Our results
show that while the deterministic approach can provide a
solution with minimum number of pictures to be taken, it
requires more knowledge and time to generate a plan. Proba-
bilistic approaches on the other hand are flexible and adapti
However, they can only provide probabilistic guarantees fo
the goal achievement.
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