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Spatio-Temporal Coordination in Networks of Biology and Physics

Biological Networks
(10_3 — 10103; 107° — 10_1m)

* Neurons
(sensory-/motor processing,
memory formation...)

o Tree" of life

» Epidemic spreading ...

Networks of physical & artificial units
(1072 — 10'%; 1072 — 10°m)

» Complex disordered media in physics
* Electric power grids (mind the renewables!)

» Autonomously behaving robots
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Towards neuro-inspired autonomous systems

* Biomechanics

» Reflexes (local motor response to a local sensation)

Central Pattern Generator (CPG)

 Distributed neural (motor) control

-> requires understanding
of collective nonlinear dynamics & self-organization




Adaptation and Learning

The two core processes supporting autonomy

1) Adaptivity (short-term and reversible)

2) Learning (long-term, sustained changes)

e are nonlinear
 induce self-organized, emerging collective states

* may be realized in a neuro-analogous way
(bio-inspired development & possible explanation of biol. phenomena)




Biomechanics of a versatile robot

The walking machine AMOS-WDO06




Neural Control: standard approach vs. adaptive chaos control

Standard approach:

Neural implem. with several central pattern generators (CPGSs)

one periodic output for one specific gait (periodic walking pattern)
« CPG1 - gait 1 (e.g. slow wave gait)

« CPG2 - qgait 2 (e.g. fast wave gait)

« CPGn - gait n (e.g. tetrapod gait)

Problem:
Coordination & learning hard = number of different gaits restricted

Nonlinear Dynamics Solution:

Adaptive neural chaos control:

One chaotic CPG that is controlled to any selected period

* single CPG - all desired gaits

Coordination & learning simple, many gaits, contructive use of chaos




From Dynamical Systems Theory to Versatile Autonomous Robots

How to coordinate many sensors with many motors in an autonomous way?
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Chaos embeds periodicity

Robust Chaos
(wide of circuit parameters)
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Chaos Is robust w.r.t. parameter changes

Robust Chaos
(wide range of all circuit parameters)
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Advanced Nonlinear Dynamics—> Progress for Autonomous Systems
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Adaptive, Neuronal Chaos Control

Chaotic dynamics controlled to be periodic
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Adaptive, Neuronal Chaos Control ...

Network output
Network output
Network output

Network output
Network output
Network output
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Multitude of periods (> 20) may be stabilized
(not normally possible by non-adapative chaos control)
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. Solves High-dim. Sensory-motor Coordination Problem ...
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many different gaits...
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. and makes autonomous robot versatile
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Broad Behavioral Repertoire

Environmental stimuli
and conditions

Period (p)

Behavioural pattern

Level floor

Upward slope

Rough terrain (hole areas)
Losing ground contact
Downward slope

Light stimuli

Strong light stimuli
Obstacles

Turned upside-down
Attack of a predator

Default

8

4,5,6,8,0r9

45, 6,8, 0r9
A

Tetrapod gait

Fast wave gait

Fast wave gait
Self-untrapping
Transition or mixture gait
Tripod gait and

orienting towards stimuli
Resting

Orienting away

from stimuli

Standing upside-down
Tripod gait (escape
behaviour)

Slow wave gait

Complex set of predefined behavioral association
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Constructive Use of Chaos

Robot with leg in hole

* looses foot contact for longer time interval
» switches control off - chaotic CPG - chaotic , gait

» successfully self-untraps

=» Example for constructive use of chaos
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Learning Suitable Gait to Save Energy

Robot on a slope (video!)

o tries different gaits
* selects the one

with low power consumption
 learns while trying

=>Next time on slope
energy-saving gait is chosen right away

Experiment 1 eriment 2

Learning to associate
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Advanced Nonlinear Dynamics—> Progress for Autonomous Systems

Advantages of single CPG approach
(instead of many separate CPGs, one for each gait)

 higher degree of versatility
(16+2+2 sensors, 18 motors, 11 distinct autonomous behavioral patterns)

» easily learnable (standard learning at one CPG)

» flexible control (adding new types behaviors)
 transferable (2/4/8-legged robots, cars, vehicles, ortheses, ...)

e constructive use of chaos (self-untrapping)
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Challenges in Network Dynamics:
New Mathematics joins Neuroscience, Engineering & Physics

e Unstable Attractors: New mathematics from neural models
synch@g. desynchronizing perturbations

IRREEIRL
IR

» Synchronization in Networks: Multi-operator problems ui

e Speed Limits: Explained by Random Matrix Theory

* Designing networks exhibiting predefined patterns: 1t Inverse problem

« Reconstructing complex network connectivity: 2" Inverse problem

e Data Analysis Methods to detect spatio-temporal relations: spikes/LFPs




Challenges in Network Dynamics:
New Mathematics joins Neuroscience, Engineering & Physics

* Theory of spatio-temporal spike patterns
Frontiers in Neurosci. 3:2 (2009);
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Discr. Cont. Dyn, Syst., in press (2010);

peak EPSP [mV]

[

Handbook on Biological Networks (Chapter on ‘Spike Patterns’) (2010). IR

additive peak EPSP [mV]

* Novel routes to desynchronization: Sequential bifurcations,...
Phys. Rev. Lett. 102:068101 (2009); Nonlinearity, under review (2010);
Europhys. Lett.,, 90:48002 (2010); SIAM J. Appl. Math. 70:2119 (2010)

» Cortical ‘ground state’: Chaos does NOT generate irregularity!
Phys. Rev. Lett. 100:048102 (2008); Frontiers in Comput. Neurosci. 3:13 (2009);

Nature Phys., 6:224 (2010); J. Phys. A: Math. Theor. 42:345103 (2009)

« Complex disordered systems & counting problems on graphs

Phys. Rev. Lett. 88:245501 (2002); Cornell Rep. 1813:1352 (2007); New J Phys. 11:023001 (2009);
Nature Phys., under review (2010); J. Phys. A: Math. Theor., 43:175002 (2010)




Thanks to ...
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Christoph Kolodziejski Christoph Kirst

Frank van Bussel Hinrich Kielblock

Carsten Grabow Birgit Kriener

Fabio Schittler-Neves Sven Jahnke

Andreas Sorge Dirk Witthaut

Raoul-Martin Memmesheimer Harvard University

Florentin Worgotter, Poramate Manoonpong
Theo Geisel, Fred Wolf & all colleagues at MPIDS & BCCN Gottingen

Silke Steingrube Solar Energy Research, Univ. Hannover
Michael Denker & Sonja Grln RIKEN Brain Science Institute

Steven Strogatz, Sebastian Stolzenberg, Dexter Kozen Cornell University

YOU all for your attention !

Questions & Comments Welcome!
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Robust and Rapid Period Stabilization
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Multitude of periods may be stabilized
(not normally possible by non-adapative control)
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Towards Versatile Autonomous Systems

Wireless camera
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TC-joint = Tharaca-coxal joint
CTr-joint = Cox a-trochantaral joint

FTi-joint =Femoral tibial joint
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