Challenges in Network Dynamics: Collective Nonlinear Dynamics for Autonomous Systems

Marc Timme

Network Dynamics Group -

Max Planck Institute for Dynamics & Self-Organization

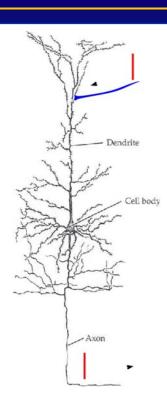
Bernstein Center for Computational Neuroscience, Göttingen

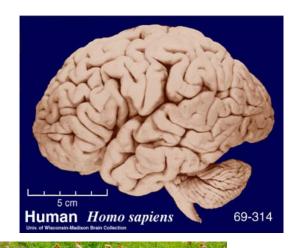
Spatio-Temporal Coordination in Networks of Biology and Physics

Biological Networks

$$\overline{(10^{-3}-10^{10}s;\ 10^{-5}-10^{-1}m)}$$

- Neurons (sensory-/motor processing, memory formation...)
- "Tree" of life
- Epidemic spreading ...





Networks of physical & artificial units

$$(10^{-2} - 10^{10}s; 10^{-9} - 10^6m)$$

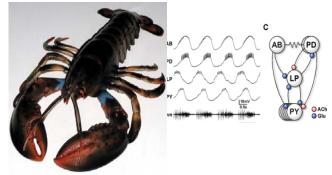
- Complex disordered media in physics
- Electric power grids (mind the renewables!)
- Autonomously behaving robots

Towards neuro-inspired autonomous systems

• Biomechanics

- Reflexes (local motor response to a local sensation)
- Distributed neural (motor) control

Central Pattern Generator (CPG)



→ requires understanding of collective nonlinear dynamics & self-organization

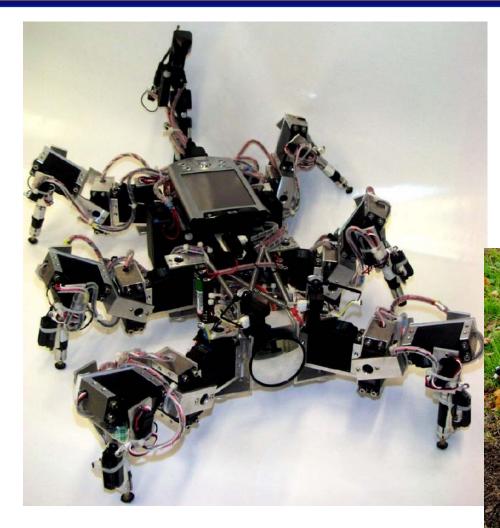
Adaptation and Learning

The two core processes supporting autonomy

- 1) Adaptivity (short-term and reversible)
- 2) **Learning** (long-term, sustained changes)

- are nonlinear
- induce **self-organized**, **emerging** collective states
- may be realized in a neuro-analogous way
 (bio-inspired development & possible explanation of biol. phenomena)

Biomechanics of a versatile robot



The walking machine AMOS-WD06
Manoonpong et al RAS 2008

Neural Control: standard approach vs. adaptive chaos control

Standard approach:

Neural implem. with several central pattern generators (CPGs) one periodic output for one specific gait (periodic walking pattern)

- CPG1 → gait 1 (e.g. slow wave gait)
- CPG2 → gait 2 (e.g. fast wave gait)
- ...
- CPGn → gait n (e.g. tetrapod gait)

Problem:

Coordination & learning hard → number of different gaits restricted

Nonlinear Dynamics Solution:

Adaptive neural chaos control:

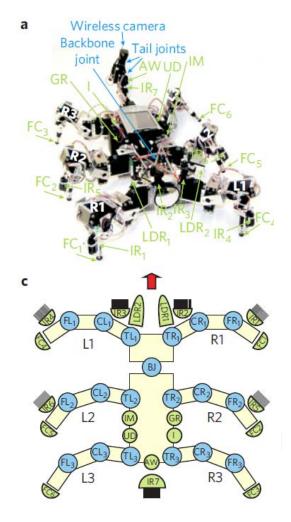
One chaotic CPG that is controlled to any selected period

single CPG → all desired gaits

Coordination & learning simple, many gaits, contructive use of chaos

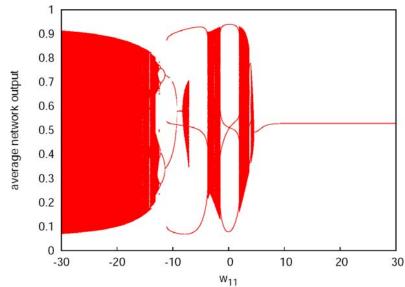
From Dynamical Systems Theory to Versatile Autonomous Robots

How to coordinate **many** sensors with **many** motors in an **autonomous** way?



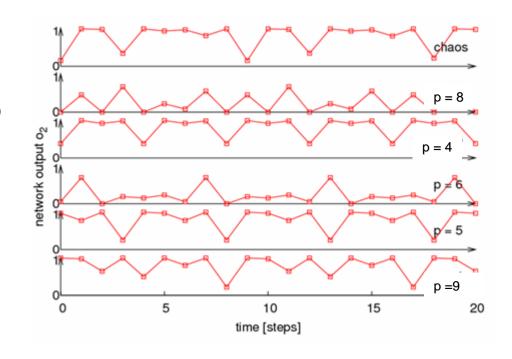
Chaos embeds periodicity

Robust Chaos (wide of circuit parameters)

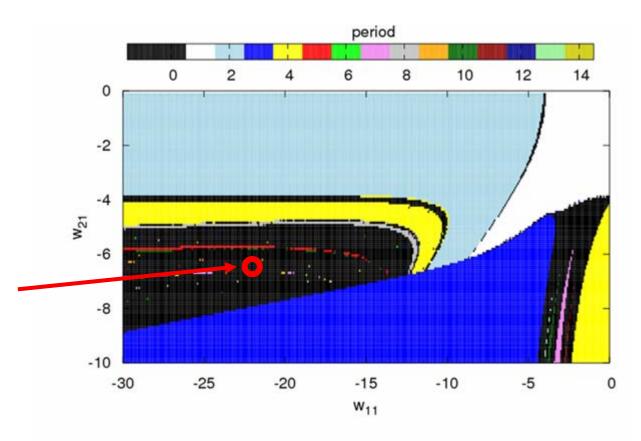


Chaos embeds infinitely many unstable periodic orbits (UPOs)

Goal here: Sensor driven period selection (at fixed parameters)



Chaos is robust w.r.t. parameter changes



Robust Chaos (wide range of all circuit parameters)

Advanced Nonlinear Dynamics -> Progress for Autonomous Systems

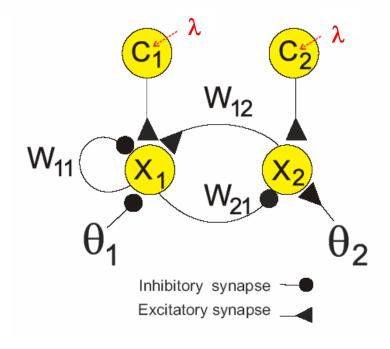
$$x_i(t+1) = \sigma \left(\theta_i + \sum_{j=1}^2 w_{ij} x_j(t) + c_i^{(p)}(t)\right) \text{ for } i \in \{1, 2\}$$

$$\sigma(x) = (1 + \exp(-x))^{-1}$$

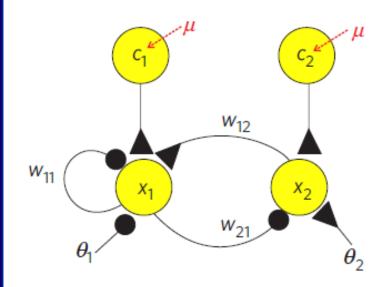
$$w_{11} = -22.0, w_{12} = 5.9,$$

$$w_{21} = -6.6, w_{22} = 0,$$

$$\theta_1 = -3.4, \, \theta_2 = 3.8,$$



Adaptive, Neuronal Chaos Control



Chaotic dynamics controlled to be periodic

$$x_i(t+1) = \sigma \left(\theta_i + \sum_{j=1}^2 w_{ij} x_j(t) + c_i^{(p)}(t)\right)$$

Standard time-delayed feedback

$$\Delta_j(t) = x_j(t) - x_j(t-p)$$

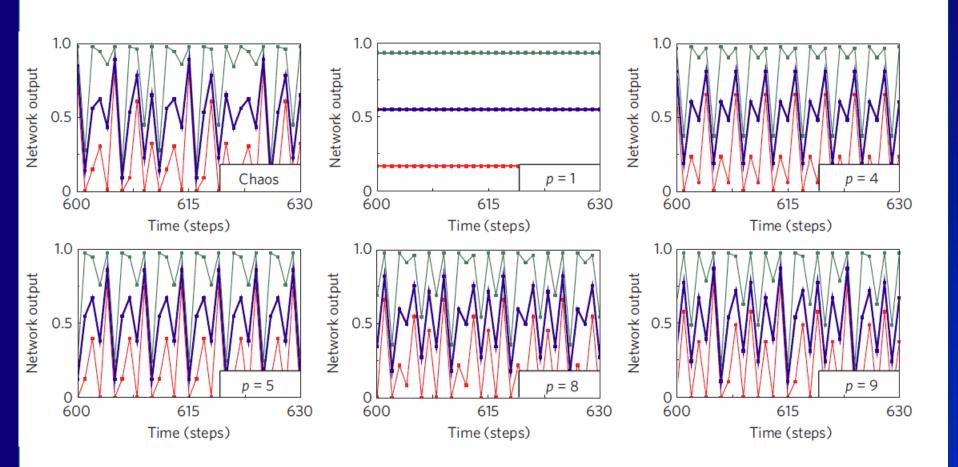
Control signal

$$c_i^{(p)}(t) = \mu^{(p)}(t) \sum_{i=1}^2 w_{ij} \Delta_j(t)$$

Adaptive control strength

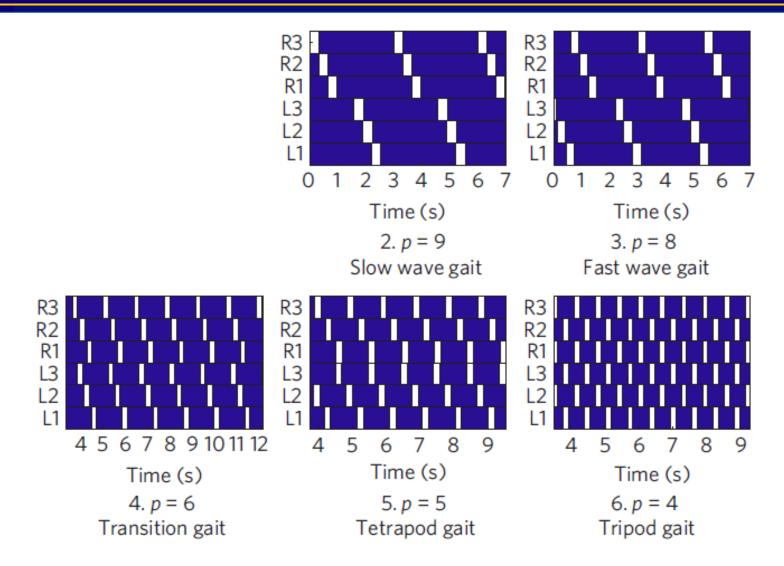
$$\mu^{(p)}(t+1) = \mu^{(p)}(t) + \lambda \frac{\Delta_1^2(t) + \Delta_2^2(t)}{p}$$

Adaptive, Neuronal Chaos Control ...



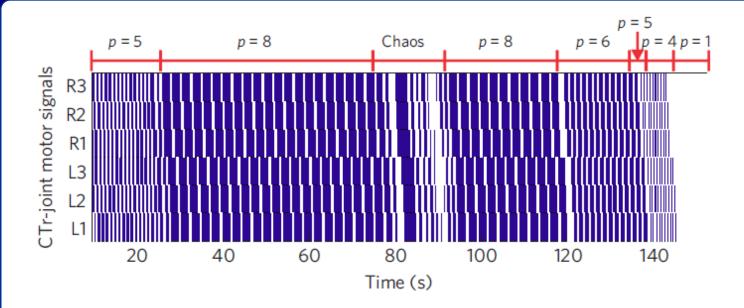
Multitude of periods (> 20) may be stabilized (not normally possible by non-adapative chaos control)

... Solves High-dim. Sensory-motor Coordination Problem ...

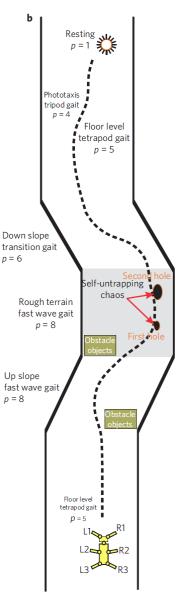


many different gaits...

... and makes autonomous robot versatile



Large behavioral repertoire... autonomously coordinated



Broad Behavioral Repertoire

Environmental stimuli and conditions	Period (p)	Behavioural pattern
Level floor	5	Tetrapod gait
Upward slope	8	Fast wave gait
Rough terrain (hole areas)	8	Fast wave gait
Losing ground contact	Chaos	Self-untrapping
Downward slope	6	Transition or mixture gait
Light stimuli	4	Tripod gait and
		orienting towards stimuli
Strong light stimuli	1	Resting
Obstacles	4, 5, 6, 8, or 9	Orienting away
		from stimuli
Turned upside-down	4, 5, 6, 8, or 9	Standing upside-down
Attack of a predator	4	Tripod gait (escape
		behaviour)
Default	9	Slow wave gait

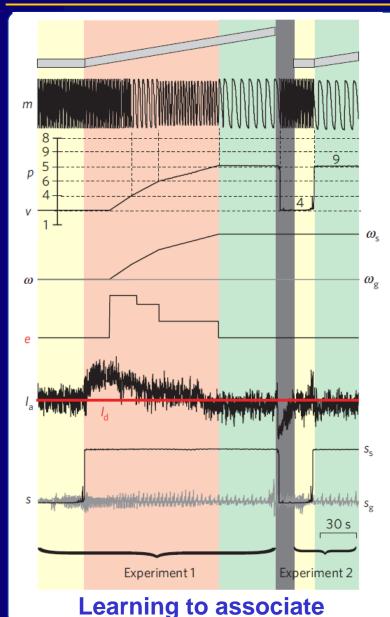
Complex set of predefined behavioral association

Constructive Use of Chaos

Robot with leg in hole

- looses foot contact for longer time interval
- switches control off → chaotic CPG → chaotic "gait"
- successfully self-untraps
- → Example for constructive use of chaos

Learning Suitable Gait to Save Energy



Robot on a slope (video!)

- tries different gaits
- selects the one with low power consumption
- learns while trying
- → Next time on slope energy-saving gait is chosen right away

Advanced Nonlinear Dynamics -> Progress for Autonomous Systems

Advantages of single CPG approach (instead of many separate CPGs, one for each gait)

- higher degree of versatility
 (16+2+2 sensors, 18 motors, 11 distinct autonomous behavioral patterns)
- easily learnable (standard learning at one CPG)
- flexible control (adding new types behaviors)
- transferable (2/4/8-legged robots, cars, vehicles, ortheses, ...)
- constructive use of chaos (self-untrapping)
- . . .

Nature Phys. 6:224 (2010);

Challenges in Network Dynamics: New Mathematics joins Neuroscience, Engineering & Physics

• Unstable Attractors: New mathematics from neural models Phys. Rev. Lett. 89:154105 (2002a); Chaos 13:377 (2003); Nonlinearity 18:20 (2005); synchronizing

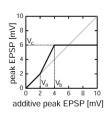
Nature 436:36 (2005); Phys. Rev. E 78:065201(R) (2008).

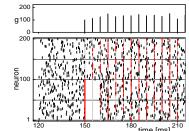
- Synchronization in Networks: Multi-operator problems Phys. Rev. Lett. 89:258701 (2002c); Phys. Rev. Lett. 92:074103 (2004a) Phys. Rev. Lett. 93 (2004c); Nonlinearity 21:1579 (2008);
- Speed Limits: Explained by Random Matrix Theory *Phys. Rev. Lett.* 92:074101 (2004b); *Chaos* 16:015108 (2006);
- Designing networks exhibiting predefined patterns: 1st Inverse problem *Phys. Rev. Lett.* 97:188101 (2006); *Physica D* 224:182 (2006);
- Reconstructing complex network connectivity: 2nd Inverse problem *Europhys. Lett.* 76:367 (2006); *Phys. Rev. Lett.* 98:224101 (2007); *Frontiers Comp. Neurosci.*, under review (2010)
- Data Analysis Methods to detect spatio-temporal relations: spikes/LFPs Neurocomputing 70:2096 (2007); Neurosci. Res. 61:S280 (2008).

Challenges in Network Dynamics: New Mathematics joins Neuroscience, Engineering & Physics

• Theory of spatio-temporal spike patterns

Frontiers in Neurosci. 3:2 (2009);
Discr. Cont. Dyn, Syst., in press (2010);
Handbook on Biological Networks (Chapter on 'Spike Patterns') (2010).





• Novel routes to desynchronization: Sequential bifurcations,...

Phys. Rev. Lett. 102:068101 (2009); Nonlinearity, under review (2010); Europhys. Lett., 90:48002 (2010); SIAM J. Appl. Math. 70:2119 (2010)

- Cortical 'ground state': Chaos does NOT generate irregularity! Phys. Rev. Lett. 100:048102 (2008); Frontiers in Comput. Neurosci. 3:13 (2009);
- Nonlinear dynamics for computation and autonomous systems
 Nature Phys., 6:224 (2010); J. Phys. A: Math. Theor. 42:345103 (2009)

Complex disordered systems & counting problems on graphs

Phys. Rev. Lett. 88:245501 (2002); Cornell Rep. 1813:1352 (2007); New J Phys. 11:023001 (2009); Nature Phys., under review (2010); J. Phys. A: Math. Theor., 43:175002 (2010)

Thanks to ...

Network Dynamics Group – MPI f. Dynamics & Self-Organization

Christoph Kolodziejski Christoph Kirst

Frank van Bussel Hinrich Kielblock

Carsten Grabow Birgit Kriener

Fabio Schittler-Neves Sven Jahnke

Andreas Sorge Dirk Witthaut

Raoul-Martin Memmesheimer Harvard University

Florentin Wörgötter, Poramate Manoonpong

Theo Geisel, Fred Wolf & all colleagues at MPIDS & BCCN Göttingen

Silke Steingrube Solar Energy Research, Univ. Hannover

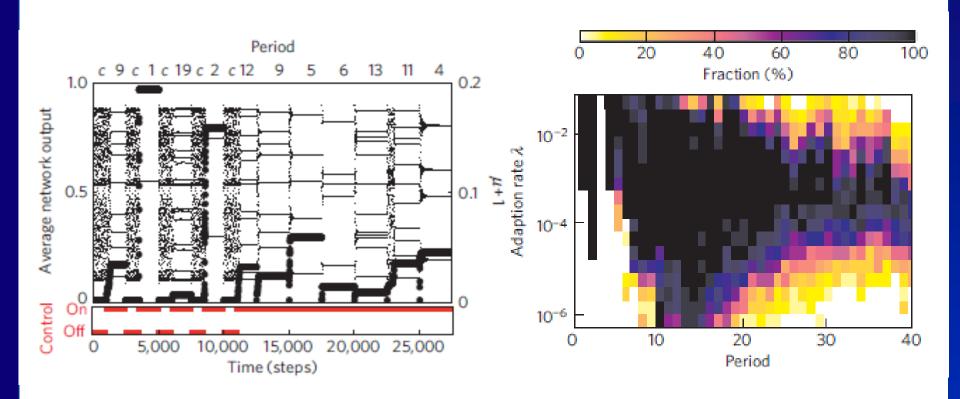
Michael Denker & Sonja Grün RIKEN Brain Science Institute

Steven Strogatz, Sebastian Stolzenberg, Dexter Kozen Cornell University

YOU all for your attention!

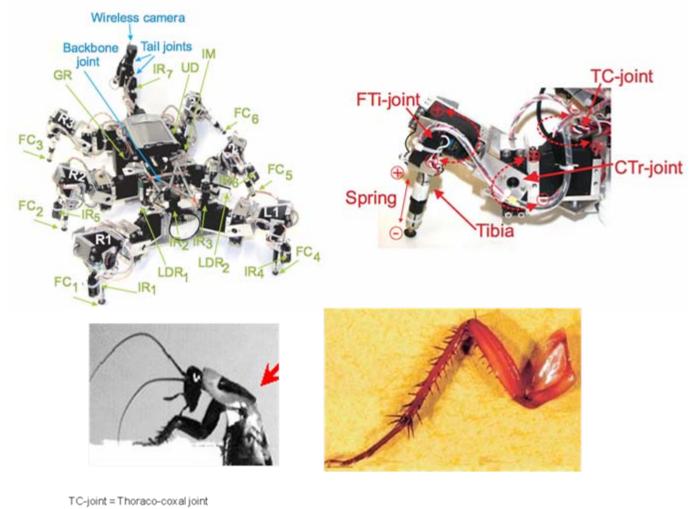
Questions & Comments Welcome!

Robust and Rapid Period Stabilization



Multitude of periods may be stabilized (not normally possible by non-adapative control)

Towards Versatile Autonomous Systems



TC-joint = Thoraco-coxal joint CTr-joint = Coxa-trochanteral joint FTi-joint = Femoral tibial joint